基于粒子濾波的電力系統(tǒng)機(jī)電暫態(tài)狀態(tài)估計(jì)研究
[Abstract]:As a kind of information measuring device, synchronous phasor measurement unit (phasor measurement unit,PMU) has been widely used in every link of power system operation, when the power system is in the electromechanical transient process, PMU can measure the phasor information of the running state of the system directly. However, because this information is measured by sensors and needs to be transmitted in a certain way, the end-used data will inevitably have random errors and bad data. In the aspect of power system security monitoring, in order to obtain more accurate control scheme or result, it is necessary to filter the actual measurement data before application. This paper presents a power system electromechanical transient state estimation method based on particle filter (Particle filtering,PF) algorithm. The main contents are as follows: firstly, the particle filter algorithm is deeply studied, which is based on the basic PF algorithm. In this paper, a PF algorithm based on sequential importance resampling (sequential importance resampling,SIR) is proposed. In order to verify the superiority of the proposed algorithm, the traditional extended Kalman filter (extended Kalman filter,EKF) algorithm, which is used to solve the nonlinear state estimation problem, is studied. In this paper, the comparison and analysis of the two algorithms are carried out theoretically. Secondly, the proposed particle filter algorithm based on SIR is applied to the actual state estimation of power system. Firstly, the operating state of the generator in the electromechanical transient process is estimated, and the fourth-order state space model of the generator is established, including the system equation and the observation equation. On the basis of the fourth-order model of generator, the noise error of state equation in transient process is analyzed, in order to evaluate the effect of quantitative estimation scientifically and reasonably, the correlation evaluation index of observation path based on Copula theory is put forward. Finally, the proposed method is applied to the electromechanical transient state estimation of the CEPRI7 node system, and the results are evaluated qualitatively and quantitatively from several angles. The results show that the estimation results based on PF have a high correlation with the actual results, and the root mean square error between the real values and the estimation results is small. The estimation effect is better than that of EKF, and the influence of the error data is reduced effectively. Finally, a method of electromechanical transient state estimation for the whole system is proposed. Based on the estimation of generator transient state, a direct solution of machine-network interface is proposed. The result of electromechanical transient state estimation of generator node is expressed by the variance of voltage phasor error of the whole system node. The whole system dynamic state estimation model considering generator transient process state estimation is established, and the accuracy of the whole system transient state estimation is improved by introducing the constraint of generator state estimation. Through the calculation and analysis of the simulation example, we can get the whole system state estimation method of power system transient process proposed in this paper, which can effectively filter out the random errors that may occur in the actual PMU measurement process. More accurate node voltage phasor values are obtained.
【學(xué)位授予單位】:東北電力大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:TM732
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 曹國(guó)亮;楊彥甫;王非;崔瀾濤;榮寧;谷健;姚勇;;基于擴(kuò)展卡爾曼的PDM-16QAM偏振態(tài)和載波相位快速跟蹤[J];光學(xué)學(xué)報(bào);2014年12期
2 王法勝;魯明羽;趙清杰;袁澤劍;;粒子濾波算法[J];計(jì)算機(jī)學(xué)報(bào);2014年08期
3 劉艷莉;戴勝;程澤;朱樂(lè)為;;基于有限差分?jǐn)U展卡爾曼濾波的鋰離子電池SOC估計(jì)[J];電工技術(shù)學(xué)報(bào);2014年01期
4 夏楠;邱天爽;李景春;李書芳;;一種卡爾曼濾波與粒子濾波相結(jié)合的非線性濾波算法[J];電子學(xué)報(bào);2013年01期
5 李青芯;汪德星;孫宏斌;吳文傳;王晶;郭慶來(lái);張伯明;;變電站狀態(tài)估計(jì)的工程實(shí)踐與效益分析[J];電力系統(tǒng)保護(hù)與控制;2012年12期
6 王宏健;王晶;邊信黔;傅桂霞;;基于組合EKF的自主水下航行器SLAM[J];機(jī)器人;2012年01期
7 郭磊;鞠平;王紅印;趙浚婧;;電力系統(tǒng)多臺(tái)發(fā)電機(jī)參數(shù)的整體辨識(shí)[J];電力系統(tǒng)自動(dòng)化;2011年17期
8 李青芯;孫宏斌;王晶;張伯明;吳文傳;郭慶來(lái);;基于零阻抗支路模型的變電站三相非線性狀態(tài)估計(jì)方法[J];中國(guó)電機(jī)工程學(xué)報(bào);2011年25期
9 彭偉;徐泰山;;電力系統(tǒng)動(dòng)態(tài)等值中發(fā)電機(jī)的選擇方法[J];電力系統(tǒng)自動(dòng)化;2010年14期
10 熊寧;程浩忠;馬則良;朱忠烈;姚良忠;張建平;傅業(yè)盛;;基于負(fù)荷裕度最大化的發(fā)電出力優(yōu)化 (一)優(yōu)化模型的提出[J];電力系統(tǒng)自動(dòng)化;2009年19期
相關(guān)博士學(xué)位論文 前4條
1 孟軍英;基于粒子濾波框架目標(biāo)跟蹤優(yōu)化算法的研究[D];燕山大學(xué);2014年
2 宋策;基于粒子濾波的目標(biāo)跟蹤技術(shù)研究[D];中國(guó)科學(xué)院研究生院(長(zhǎng)春光學(xué)精密機(jī)械與物理研究所);2014年
3 李昱辰;基于粒子濾波的視頻目標(biāo)跟蹤方法研究[D];蘭州理工大學(xué);2013年
4 曹蓓;粒子濾波改進(jìn)算法及其應(yīng)用研究[D];中國(guó)科學(xué)院研究生院(西安光學(xué)精密機(jī)械研究所);2012年
相關(guān)碩士學(xué)位論文 前3條
1 陳鋒;卡爾曼濾波和卡爾曼預(yù)測(cè)方法的改進(jìn)及其在結(jié)構(gòu)損傷識(shí)別中的應(yīng)用[D];廈門大學(xué);2014年
2 鄒s,
本文編號(hào):2455501
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/2455501.html