天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 科技論文 > 電氣論文 >

基于雙卡爾曼濾波算法的磷酸鐵鋰電池建模及SOC估計(jì)

發(fā)布時(shí)間:2019-03-13 18:55
【摘要】:當(dāng)前世界的能源儲(chǔ)備急劇減少,環(huán)境污染問(wèn)題也變得越來(lái)越嚴(yán)峻。大力開發(fā)能夠替代傳統(tǒng)能源并且對(duì)環(huán)境無(wú)污染的新能源越來(lái)越成為大家重視的問(wèn)題。在汽車領(lǐng)域,世界各國(guó)都加大了對(duì)新能源汽車的研究。動(dòng)力電池作為電動(dòng)汽車的動(dòng)力來(lái)源,是能夠影響電動(dòng)汽車發(fā)展程度的一個(gè)重要因素。相比于其他電池,磷酸鐵鋰電池由于其優(yōu)越的性能在作為電動(dòng)汽車動(dòng)力電池方面脫穎而出,應(yīng)用越來(lái)越廣泛。但磷酸鐵鋰電池存在單體電池間同一性較差的問(wèn)題,因此設(shè)計(jì)一套對(duì)電池組進(jìn)行管理的電池管理系統(tǒng)(Battery Management System,BMS)是非常關(guān)鍵的。對(duì)電池的荷電狀態(tài)(State of charge,SOC)進(jìn)行準(zhǔn)確地估計(jì)是電池管理系統(tǒng)能夠有效運(yùn)行的核心和關(guān)鍵。本文以一款50AH的磷酸鐵鋰電池作為研究對(duì)象,對(duì)其建立電池模型,并在該模型的基礎(chǔ)上重點(diǎn)研究SOC的估計(jì)方法。論文主要工作及成果如下:1、對(duì)電池SOC估計(jì)的研究背景進(jìn)行了詳細(xì)的介紹,介紹磷酸鐵了鋰電池的優(yōu)點(diǎn)和特性和當(dāng)前對(duì)電池模型和電池SOC估計(jì)研究的現(xiàn)狀,為后文對(duì)本文研究對(duì)象磷酸鐵鋰電池進(jìn)行電池建模和SOC估算建立了基礎(chǔ)。在對(duì)磷酸鐵鋰電池的工作原理和主要特性進(jìn)行分析和總結(jié)的基礎(chǔ)上設(shè)計(jì)了實(shí)驗(yàn)對(duì)電池特性進(jìn)行測(cè)定。最后,介紹了當(dāng)前得到廣泛認(rèn)可的SOC的定義方法,并在傳統(tǒng)SOC定義方法的基礎(chǔ)上進(jìn)行了改進(jìn),得到了動(dòng)態(tài)SOC的定義方法,這是后文對(duì)電池進(jìn)行建模和對(duì)電池進(jìn)行SOC估計(jì)的理論依據(jù)。2、對(duì)電池的四種等效模型進(jìn)行了分析和比較,最終確定二階RC模型作為本文研究電池的模型,考慮到電池單體間的同一性較差,因此在二階RC模型上做出改進(jìn),得到了改進(jìn)二階RC模型,并對(duì)模型進(jìn)行了公式推導(dǎo),并在Matlab中進(jìn)行了仿真分析,驗(yàn)證了模型的準(zhǔn)確性。3、詳細(xì)介紹了 Kalman算法的基本原理,并在經(jīng)典卡爾曼濾波算法的基礎(chǔ)上對(duì)適用于非線性系統(tǒng)的擴(kuò)展卡爾曼濾波算法進(jìn)行了原理介紹和公式推導(dǎo)。采用經(jīng)典卡爾曼濾波器和擴(kuò)展卡爾曼濾波器相結(jié)合的雙卡爾曼濾波算法聯(lián)合估計(jì)電池SOC和電池模型參數(shù),通過(guò)實(shí)驗(yàn)及Matlab仿真在橫流放電工況和脈沖放電這兩種工況下驗(yàn)證了雙卡爾曼濾波算法聯(lián)合估計(jì)電池SOC和電池模型參數(shù)方法的準(zhǔn)確性。4、研究了基于CKF估計(jì)電池SOC的方法,并將這種估算方法和基于UKF估計(jì)電池SOC方法進(jìn)行了比較,最后通過(guò)仿真實(shí)驗(yàn)發(fā)現(xiàn)基于CKF估計(jì)電池SOC具有更高的精確性。5、利用最小二乘支持向量機(jī)(Least Squares Support Vector Machine,LSSVM)構(gòu)建LSSVM模型,在此基礎(chǔ)上實(shí)現(xiàn)對(duì)電池SOC的估計(jì),并引入粒子群優(yōu)化算法(PSO)以提高訓(xùn)練效率與模型精度。通過(guò)恒流放電實(shí)驗(yàn)和脈沖充放電實(shí)驗(yàn)驗(yàn)證了 PSO-LSSVM方法對(duì)電池SOC估計(jì)的有效性。
[Abstract]:At present, the world's energy reserves are sharply reduced, and environmental pollution is becoming more and more serious. More and more attention has been paid to the development of new energy which can replace the traditional energy and not pollute the environment. In the field of automobiles, countries all over the world have increased their research on new energy vehicles. As the power source of electric vehicle, power battery is an important factor that can influence the development degree of electric vehicle. Compared with other batteries, lithium iron phosphate battery is more and more widely used as electric vehicle power battery because of its superior performance. However, lithium iron phosphate batteries have the problem of poor identity among single batteries, so it is very important to design a battery management system (Battery Management System,BMS) for battery pack management. Accurate estimation of the charge state (State of charge,SOC) of the battery is the core and key to the effective operation of the battery management system. In this paper, a 50AH lithium iron phosphate battery is taken as the research object, and the battery model is established. On the basis of this model, the SOC estimation method is mainly studied. The main work and achievements are as follows: 1. The research background of battery SOC estimation is introduced in detail. The advantages and characteristics of iron phosphate lithium battery and the current research status of battery model and battery SOC estimation are also introduced. The foundation of the battery modeling and SOC estimation for the lithium ferric phosphate battery studied in this paper is established. Based on the analysis and summary of the working principle and main characteristics of the lithium iron phosphate battery, an experiment was designed to measure the characteristics of the battery. Finally, the definition method of SOC, which has been widely accepted, is introduced and improved on the basis of traditional SOC definition method, and the definition method of dynamic SOC is obtained. This is the theoretical basis of the battery modeling and SOC estimation. 2, the four equivalent models of the battery are analyzed and compared. Finally, the second-order RC model is selected as the model of the battery in this paper. Considering the poor identity between cells, this paper improves the second order RC model, obtains the improved second order RC model, deduces the formula of the model, and simulates the model in Matlab to verify the accuracy of the model. The basic principle of Kalman algorithm is introduced in detail. On the basis of classical Kalman filtering algorithm, the extended Kalman filter algorithm suitable for nonlinear systems is introduced in principle and formula derived. The dual Kalman filter algorithm combined with classical Kalman filter and extended Kalman filter is used to jointly estimate the parameters of battery SOC and battery model. The accuracy of the dual Kalman filter algorithm to jointly estimate the battery SOC and battery model parameters is verified by experiments and Matlab simulation under the condition of cross-flow discharge and pulse discharge. 4. 4. The method of estimating battery SOC based on CKF is studied. The method is compared with the SOC method based on UKF. Finally, the simulation results show that the estimation of battery SOC based on CKF has higher accuracy. 5. The least squares support vector machine (Least Squares Support Vector Machine,) is used to estimate the battery SOC with least square support vector machine (LSVM). LSSVM) constructs the LSSVM model, then realizes the estimation of battery SOC, and introduces the particle swarm optimization algorithm (PSO) to improve the training efficiency and model precision. The validity of the PSO-LSSVM method for SOC estimation is verified by the constant current discharge experiment and the pulse charge-discharge experiment.
【學(xué)位授予單位】:西南交通大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TM912

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 Xi-Kun Chen;Dong Sun;;Modeling and state of charge estimation of lithium-ion battery[J];Advances in Manufacturing;2015年03期

2 黃艷軍;;發(fā)展電動(dòng)汽車目前存在的主要問(wèn)題及關(guān)鍵技術(shù)[J];黑龍江科技信息;2015年19期

3 ;全球新能源汽車觀察[J];裝備制造;2014年08期

4 王銘;李建軍;吳b^;萬(wàn)春榮;何向明;;鋰離子電池模型研究進(jìn)展[J];電源技術(shù);2011年07期

5 張賓;郭連兌;崔忠彬;謝永才;陳全世;;電動(dòng)汽車用動(dòng)力鋰離子電池的電壓特性[J];電池工業(yè);2009年06期

6 馬文偉;鄭建勇;尤捚;張先飛;;應(yīng)用Kalman濾波法估計(jì)光伏發(fā)電系統(tǒng)鉛酸蓄電池SOC[J];通信電源技術(shù);2009年05期

7 盧居霄;林成濤;陳全世;韓曉東;;三類常用電動(dòng)汽車電池模型的比較研究[J];電源技術(shù);2006年07期

8 林成濤;仇斌;陳全世;;電動(dòng)汽車電池非線性等效電路模型的研究[J];汽車工程;2006年01期

9 林成濤,王軍平,陳全世;電動(dòng)汽車SOC估計(jì)方法原理與應(yīng)用[J];電池;2004年05期

10 譚東寧,譚東漢;小樣本機(jī)器學(xué)習(xí)理論:統(tǒng)計(jì)學(xué)習(xí)理論[J];南京理工大學(xué)學(xué)報(bào);2001年01期

相關(guān)碩士學(xué)位論文 前1條

1 劉彥忠;車用動(dòng)力電池充放電特性與智能管理技術(shù)[D];北京交通大學(xué);2012年

,

本文編號(hào):2439680

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/2439680.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶9b4d0***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com