基于因子分析和神經(jīng)網(wǎng)絡(luò)分位數(shù)回歸的月度風(fēng)電功率曲線概率預(yù)測
發(fā)布時間:2019-03-07 14:23
【摘要】:針對月度風(fēng)電曲線預(yù)測存在的預(yù)測變量多且關(guān)系復(fù)雜、可利用天氣信息少以及不確定性強等問題,提出了一種基于因子分析和神經(jīng)網(wǎng)絡(luò)分位數(shù)回歸的月度風(fēng)電曲線概率預(yù)測方法。采用因子分析對日內(nèi)小時級風(fēng)電功率序列向量降維,提取出相互獨立的風(fēng)電公共因子作為預(yù)測變量,分別建立以日天氣特征為輸入的神經(jīng)網(wǎng)絡(luò)分位數(shù)條件概率模型;利用中期天氣預(yù)報信息,預(yù)測未來30日各公共因子的概率分布;最后通過模擬服從預(yù)測分布的風(fēng)電公共因子和各時刻特殊因子,并代入因子模型逐日還原風(fēng)電預(yù)測曲線,生成未來月風(fēng)電曲線的隨機(jī)場景。兩個實際風(fēng)電場的預(yù)測結(jié)果驗證了所提風(fēng)電曲線概率預(yù)測方法的準(zhǔn)確性、適應(yīng)性和高效性,為中長期風(fēng)電功率概率預(yù)測提供了一種可行的解決思路。
[Abstract]:There are many forecasting variables and complex relationships in monthly wind power curve prediction, such as low availability of weather information and strong uncertainty, and so on. A probabilistic forecasting method of monthly wind power curve based on factor analysis and neural network quantile regression is proposed. Factor analysis is used to reduce the dimension of wind power series vector, and independent common wind power factors are extracted as prediction variables. The conditional probability models of neural network quantiles are established with daily weather characteristics as input. Using the medium-term weather forecast information, the probability distribution of the common factors in the next 30 days is predicted. Finally, the wind power forecasting curve is reduced day by simulating the common and special wind power factors which obey the forecast distribution, and the random scene of the future monthly wind power curve is generated by using the factor model to restore the wind power forecast curve day by day. The prediction results of two practical wind farms verify the accuracy, adaptability and efficiency of the proposed wind power curve probability prediction method, which provides a feasible solution for the medium-and long-term wind power probability prediction.
【作者單位】: 重慶大學(xué)電氣工程學(xué)院;南方電網(wǎng)科學(xué)研究院;
【基金】:國家自然科學(xué)基金項目(51177178,51677012) 重慶市科委基礎(chǔ)與前沿研究計劃項目(cstc2013jcyj A90001)~~
【分類號】:TM614
本文編號:2436193
[Abstract]:There are many forecasting variables and complex relationships in monthly wind power curve prediction, such as low availability of weather information and strong uncertainty, and so on. A probabilistic forecasting method of monthly wind power curve based on factor analysis and neural network quantile regression is proposed. Factor analysis is used to reduce the dimension of wind power series vector, and independent common wind power factors are extracted as prediction variables. The conditional probability models of neural network quantiles are established with daily weather characteristics as input. Using the medium-term weather forecast information, the probability distribution of the common factors in the next 30 days is predicted. Finally, the wind power forecasting curve is reduced day by simulating the common and special wind power factors which obey the forecast distribution, and the random scene of the future monthly wind power curve is generated by using the factor model to restore the wind power forecast curve day by day. The prediction results of two practical wind farms verify the accuracy, adaptability and efficiency of the proposed wind power curve probability prediction method, which provides a feasible solution for the medium-and long-term wind power probability prediction.
【作者單位】: 重慶大學(xué)電氣工程學(xué)院;南方電網(wǎng)科學(xué)研究院;
【基金】:國家自然科學(xué)基金項目(51177178,51677012) 重慶市科委基礎(chǔ)與前沿研究計劃項目(cstc2013jcyj A90001)~~
【分類號】:TM614
【相似文獻(xiàn)】
相關(guān)期刊論文 前2條
1 蘇方林;宋幫英;;中國電力消費影響因素權(quán)重的分位數(shù)回歸研究[J];河北科技大學(xué)學(xué)報;2010年04期
2 閻潔;劉永前;韓爽;王勃;;分位數(shù)回歸在風(fēng)電功率預(yù)測不確定性分析中的應(yīng)用[J];太陽能學(xué)報;2013年12期
相關(guān)碩士學(xué)位論文 前3條
1 羅小青;基于分位數(shù)回歸的中國GDP與電力消費量關(guān)系研究[D];華南理工大學(xué);2015年
2 梁沛;風(fēng)電功率短期預(yù)測方法研究[D];重慶大學(xué);2016年
3 劉瑞;基于支持向量分位數(shù)回歸與智能電網(wǎng)的短期電力負(fù)荷概率密度預(yù)測方法[D];合肥工業(yè)大學(xué);2017年
,本文編號:2436193
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/2436193.html
最近更新
教材專著