利用累積能量函數(shù)特征參量優(yōu)化提取的多源局部放電信號分離技術
發(fā)布時間:2019-02-16 07:14
【摘要】:變電設備內部有時會存在多個缺陷的局部放電,其放電模式識別及危險度評估的難度大大增加,為更有效地診斷設備絕緣狀況,該文提出了一種基于累積能量函數(shù)特征參量優(yōu)化提取的多源局放分離技術。利用時頻域累積能量函數(shù)表征脈沖電流脈沖或特高頻(UHF)信號的時頻域變化,并采用數(shù)學形態(tài)學梯度運算提取了時頻域累積能量的上升陡度參量。提出了以上升陡度參量的標準差作為分離性能評價指標,優(yōu)化選取數(shù)學形態(tài)學梯度運算中的結構元素長度,提取此時的上升陡度參量,達到最優(yōu)分離效果的目標。最后在實驗室252k V GIS模型內建立了3種典型多缺陷模型,將所提出的多源放電分離技術應用于該混合缺陷放電UHF信號的分離,進而將該方法成功應用于一起現(xiàn)場1100k V GIS多源局放案例。結果表明,特征參量優(yōu)化提取分離方法適用于內外置UHF傳感器信號,在多源放電混合UHF信號分離中具有良好的應用效果。
[Abstract]:In order to diagnose the insulation condition of the equipment more effectively, there are some partial discharges which have many defects in the transformer equipment, so it is more difficult to identify the discharge mode and evaluate the risk degree. In this paper, a multi-source partial discharge separation technique based on the feature parameter extraction of cumulative energy function is proposed. The time-frequency domain variation of pulse current pulse or ultra-high frequency (UHF) (UHF) signal is characterized by time-frequency cumulative energy function, and the ascending steepness parameter of time-frequency cumulative energy is extracted by mathematical morphological gradient operation. The standard deviation of ascending steepness parameter is used as the evaluation index of separation performance. The length of structural elements in mathematical morphological gradient operation is optimized and the ascending steepness parameter is extracted to achieve the goal of optimal separation effect. Finally, three typical multi-defect models are established in the 252kV GIS model of laboratory. The proposed multi-source discharge separation technique is applied to the separation of UHF signals from the mixed defect discharge. Furthermore, the method is successfully applied to a field case of 1100kV GIS multi-source PD. The results show that the method of extracting and separating characteristic parameters is suitable for the internal and external UHF sensor signals, and has a good application effect in the multi-source discharge mixed UHF signal separation.
【作者單位】: 國網浙江省電力公司電力科學研究院;國網浙江省電力公司;電力設備電氣絕緣國家重點實驗室(西安交通大學);
【基金】:中國博士后科學基金資助項目(2015M580848) 國家自然科學基金項目(51607140) 國網浙江省電力公司科技項目(5211DS15002P)~~
【分類號】:TM855
[Abstract]:In order to diagnose the insulation condition of the equipment more effectively, there are some partial discharges which have many defects in the transformer equipment, so it is more difficult to identify the discharge mode and evaluate the risk degree. In this paper, a multi-source partial discharge separation technique based on the feature parameter extraction of cumulative energy function is proposed. The time-frequency domain variation of pulse current pulse or ultra-high frequency (UHF) (UHF) signal is characterized by time-frequency cumulative energy function, and the ascending steepness parameter of time-frequency cumulative energy is extracted by mathematical morphological gradient operation. The standard deviation of ascending steepness parameter is used as the evaluation index of separation performance. The length of structural elements in mathematical morphological gradient operation is optimized and the ascending steepness parameter is extracted to achieve the goal of optimal separation effect. Finally, three typical multi-defect models are established in the 252kV GIS model of laboratory. The proposed multi-source discharge separation technique is applied to the separation of UHF signals from the mixed defect discharge. Furthermore, the method is successfully applied to a field case of 1100kV GIS multi-source PD. The results show that the method of extracting and separating characteristic parameters is suitable for the internal and external UHF sensor signals, and has a good application effect in the multi-source discharge mixed UHF signal separation.
【作者單位】: 國網浙江省電力公司電力科學研究院;國網浙江省電力公司;電力設備電氣絕緣國家重點實驗室(西安交通大學);
【基金】:中國博士后科學基金資助項目(2015M580848) 國家自然科學基金項目(51607140) 國網浙江省電力公司科技項目(5211DS15002P)~~
【分類號】:TM855
【參考文獻】
相關期刊論文 前5條
1 黃亮;唐炬;凌超;張曉星;;基于多特征信息融合技術的局部放電模式識別研究[J];高電壓技術;2015年03期
2 司良奇;錢勇;白萬建;葉海峰;胡岳;盛戈v,
本文編號:2424186
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/2424186.html
最近更新
教材專著