天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 科技論文 > 電氣論文 >

計及PMU的魯棒電力系統(tǒng)預測輔助狀態(tài)估計

發(fā)布時間:2019-02-13 08:07
【摘要】:電力系統(tǒng)狀態(tài)估計在現(xiàn)代能量管理系統(tǒng)(EMS)中扮演著至關重要的作用,是調(diào)度人員進行正確決策的基礎。但量測數(shù)據(jù)常因量測裝置內(nèi)在誤差、傳輸噪聲等原因受到污染,干擾狀態(tài)估計結果,誤導調(diào)度人員。因此,提高狀態(tài)估計算法的魯棒性以及抑制不良數(shù)據(jù)的能力,對保證電力系統(tǒng)穩(wěn)定運行有重要意義。隨著量測裝置技術的發(fā)展,同步相量量測裝置(PMU)在電力系統(tǒng)中推廣應用,為狀態(tài)估計提供高精度、高同步的量測。同時,PMU量測與SCADA量測來源不同,相互獨立,從而互為備用,可以有效抑制SCADA量測中的不良數(shù)據(jù),進一步提高算法的魯棒性。因此,本文主要是提出一種魯棒性更好的預測輔助狀態(tài)估計算法,并探究PMU量測對該算法估計精度和魯棒性的影響。本文主要內(nèi)容如下:1.簡單介紹了幾種應用在狀態(tài)估計中的算法,包括加權最小二乘法、卡爾曼濾波和擴展卡爾曼濾波。2.基于SCADA量測,在擴展卡爾曼濾波(EKF)的基礎上改進,提出了廣義最大似然類型一擴展卡爾曼濾波算法(GM-EKF);舅悸:首先,利用EKF的狀態(tài)方程與量測方程構建線性回歸框架。然后,利用投影統(tǒng)計算法(PS)辨識異常值并構建等價權函數(shù)。接著,評價函數(shù)選擇Huber函數(shù),構建類似WLS形式的目標函數(shù)并利用IRLS求解。為驗證算法的有效性和魯棒性,將GM-EKF算法在IEEE標準測試系統(tǒng)中仿真,并與相關算法進行結果比較。3.基于SCADA/PMU混合量測,探究PMU量測對于GM-EKF算法估計精度和魯棒性的影響。基本思路:針對PMU量測與SCADA量測不同融合方式,一種是狀態(tài)變量為極坐標,直接添加PMU量測,形成非線性的魯棒預測輔助狀態(tài)估計算法。另一種是首先處理收集到的SCADA量測,將處理的狀態(tài)估計值與PMU量測作為新的量測,在直角坐標系下,形成線性的魯棒預測輔助狀態(tài)估計算法。將算法在IEEE標準測試系統(tǒng)中仿真,分析仿真結果。
[Abstract]:Power system state estimation plays an important role in modern energy management system (EMS) and is the basis for dispatcher to make correct decision. However, the measurement data are often contaminated by the inherent errors of the measuring device and transmission noise, and the estimation results of the interference state are misled by the dispatcher. Therefore, it is important to improve the robustness of the state estimation algorithm and the ability to suppress bad data to ensure the stable operation of power system. With the development of measuring device technology, synchronous phasor device (PMU) is widely used in power system, which provides high precision and high synchronization measurement for state estimation. At the same time, the sources of PMU measurement and SCADA measurement are different and independent, which can effectively suppress the bad data in SCADA measurement and further improve the robustness of the algorithm. Therefore, this paper mainly proposes a more robust predictor-aided state estimation algorithm, and explores the effect of PMU measurements on the estimation accuracy and robustness of the algorithm. The main contents of this paper are as follows: 1. This paper briefly introduces several algorithms used in state estimation, including weighted least square method, Kalman filter and extended Kalman filter. Based on SCADA measurement and the improvement of extended Kalman filter (EKF), an extended Kalman filter algorithm (GM-EKF), a generalized maximum likelihood type, is proposed. Basic ideas: firstly, the linear regression framework is constructed by using EKF's equation of state and measurement equation. Then, the outliers are identified by projection statistic algorithm (PS) and the equivalent weight function is constructed. Then, the evaluation function selects the Huber function, constructs the objective function similar to WLS and solves it by IRLS. In order to verify the effectiveness and robustness of the algorithm, the GM-EKF algorithm is simulated in the IEEE standard test system, and the results are compared with the related algorithms. 3. Based on SCADA/PMU mixed measurement, the effect of PMU measurement on estimation accuracy and robustness of GM-EKF algorithm is investigated. The basic idea: according to the different fusion methods of PMU measurement and SCADA measurement, one is that the state variable is polar coordinate and PMU measurement is added directly to form a nonlinear robust predictive auxiliary state estimation algorithm. The other is to process the collected SCADA measurements first and take the state estimators and PMU measurements as new measurements to form a linear robust predictive auxiliary state estimation algorithm in rectangular coordinates. The algorithm is simulated in IEEE standard test system and the simulation results are analyzed.
【學位授予單位】:西南交通大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TM73

【參考文獻】

相關期刊論文 前10條

1 朱杰;張葛祥;王濤;趙俊博;;電力系統(tǒng)狀態(tài)估計欺詐性數(shù)據(jù)攻擊及防御綜述[J];電網(wǎng)技術;2016年08期

2 朱杰;張葛祥;;基于歷史數(shù)據(jù)庫的電力系統(tǒng)狀態(tài)估計欺詐性數(shù)據(jù)防御[J];電網(wǎng)技術;2016年06期

3 丁宏恩;高宗和;蘇大威;趙家慶;常乃超;龔成明;;混合量測狀態(tài)估計相角參考點壞數(shù)據(jù)問題的處理方法[J];電力系統(tǒng)自動化;2014年09期

4 趙俊博;張葛祥;黃彥全;;含新能源電力系統(tǒng)狀態(tài)估計研究現(xiàn)狀和展望[J];電力自動化設備;2014年05期

5 林桂華;安天瑜;周蘇荃;張艷軍;孫明一;;計及PMU量測信息的量測量變換狀態(tài)估計[J];電網(wǎng)技術;2009年17期

6 程濤;黃彥全;申鐵;;遺傳算法在PMU優(yōu)化配置中的應用[J];電力系統(tǒng)及其自動化學報;2009年01期

7 盧志剛;張宗偉;;基于量測量替換與標準化殘差檢測的不良數(shù)據(jù)辨識[J];電力系統(tǒng)自動化;2007年13期

8 衛(wèi)志農(nóng);李陽林;鄭玉平;;基于混合量測的電力系統(tǒng)線性動態(tài)狀態(tài)估計算法[J];電力系統(tǒng)自動化;2007年06期

9 秦曉輝;畢天姝;楊奇遜;;計及PMU的混合非線性狀態(tài)估計新方法[J];電力系統(tǒng)自動化;2007年04期

10 黃彥全;肖建;李云飛;邵明;黃慶;;基于量測數(shù)據(jù)相關性的電力系統(tǒng)不良數(shù)據(jù)檢測和辨識新方法[J];電網(wǎng)技術;2006年02期

相關博士學位論文 前1條

1 王英濤;基于WAMS的電力系統(tǒng)動態(tài)監(jiān)測及分析研究[D];中國電力科學研究院;2006年

相關碩士學位論文 前5條

1 楊霽;基于狀態(tài)預測的電力系統(tǒng)狀態(tài)估計及不良數(shù)據(jù)檢測與辨識[D];西南交通大學;2015年

2 李波;混合量測下電力系統(tǒng)動態(tài)狀態(tài)估計研究[D];上海交通大學;2013年

3 林桂華;基于PMU的電力系統(tǒng)狀態(tài)估計研究[D];哈爾濱工業(yè)大學;2009年

4 李陽林;基于WAMS/SCADA混合量測的電力系統(tǒng)動態(tài)狀態(tài)估計算法研究[D];河海大學;2007年

5 孫國強;基于相量測量的電力系統(tǒng)狀態(tài)估計研究[D];河海大學;2005年



本文編號:2421347

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/2421347.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權申明:資料由用戶967a2***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com