天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 科技論文 > 電氣論文 >

基于用戶(hù)用電行為建模和參數(shù)辨識(shí)的需求響應(yīng)應(yīng)用研究

發(fā)布時(shí)間:2018-12-27 19:46
【摘要】:需求響應(yīng)能夠?qū)崿F(xiàn)供電側(cè)與用電側(cè)的有效資源互動(dòng),提高系統(tǒng)運(yùn)行效率和可靠性。有效利用需求側(cè)資源與傳統(tǒng)的單一增加調(diào)峰電源或加強(qiáng)電網(wǎng)建設(shè)的做法相比,可以極大減輕基礎(chǔ)設(shè)施的投資壓力。目前基于激勵(lì)的需求響應(yīng)項(xiàng)目大多針對(duì)工業(yè)用戶(hù)實(shí)施,而居民、商業(yè)和辦公等用戶(hù)雖然單體容量小但數(shù)量龐大、分布廣泛,具有很大的需求響應(yīng)潛力,且更適合開(kāi)展基于電價(jià)的需求響應(yīng)項(xiàng)目。因此在智能用電環(huán)境下,開(kāi)展用戶(hù)用電行為分析,是需求響應(yīng)應(yīng)用的基礎(chǔ)性工作。本文從單個(gè)用戶(hù)的用電情況監(jiān)測(cè)出發(fā),搭建多維度負(fù)荷分類(lèi)體系,根據(jù)典型用電負(fù)荷分類(lèi),對(duì)單個(gè)用戶(hù)的用電負(fù)荷進(jìn)行分解,并對(duì)多個(gè)用戶(hù)進(jìn)行用電行為分析,形成了具備不同價(jià)格敏感度的用戶(hù)聚類(lèi)。針對(duì)已得到的聚合用戶(hù),構(gòu)建實(shí)時(shí)市場(chǎng)環(huán)境,實(shí)現(xiàn)對(duì)聚合用戶(hù)的電價(jià)調(diào)度。首先,分析了用戶(hù)參與需求響應(yīng)的必要性和可行性,概述了目前需求響應(yīng)在國(guó)內(nèi)外的發(fā)展應(yīng)用現(xiàn)狀,并從電價(jià)調(diào)度、用電行為分析和模型參數(shù)辨識(shí)三個(gè)方面總結(jié)了學(xué)術(shù)界的研究現(xiàn)狀,為本文的后續(xù)研究奠定了基礎(chǔ)。其次,對(duì)于單個(gè)用戶(hù),針對(duì)目前常用負(fù)荷分解方法存在的不足,綜合考慮用戶(hù)常用設(shè)備的用途和特性,提出了多維度負(fù)荷分類(lèi)體系,分別從功能維度、時(shí)間維度和功率維度進(jìn)行設(shè)備分類(lèi),并基于模糊隸屬度函數(shù)構(gòu)建用戶(hù)負(fù)荷分解模型,以模糊隸屬度表征負(fù)荷分解結(jié)果的可信度,實(shí)現(xiàn)用戶(hù)用電負(fù)荷的分解,為需求響應(yīng)項(xiàng)目的潛力分析提供基礎(chǔ)。然后,對(duì)于多個(gè)用戶(hù),基于改進(jìn)K-Means聚類(lèi)算法,在峰谷電價(jià)環(huán)境下,選取峰谷平各時(shí)段的用電量占比和負(fù)荷率作為用戶(hù)的用電特征量,構(gòu)建用電行為聚類(lèi)模型,對(duì)用戶(hù)用電行為進(jìn)行聚類(lèi)分析,并針對(duì)價(jià)格轉(zhuǎn)換點(diǎn)前后的用戶(hù)用電量變化情況,提出了用戶(hù)價(jià)格敏感度的計(jì)算方法,構(gòu)建用戶(hù)篩選模型,從而確定適合于價(jià)格需求響應(yīng)的敏感對(duì)象。最后,對(duì)于聚合用戶(hù),在基于消費(fèi)者心理學(xué)構(gòu)建的實(shí)時(shí)市場(chǎng)環(huán)境下,應(yīng)用支持向量機(jī)進(jìn)行模型參數(shù)辨識(shí),構(gòu)建需求響應(yīng)電價(jià)的計(jì)算模型,并對(duì)電價(jià)調(diào)度誤差和應(yīng)用場(chǎng)景進(jìn)行分析。對(duì)比通過(guò)人工神經(jīng)網(wǎng)絡(luò)和回歸分析方法得到的誤差,提出將這三種參數(shù)辨識(shí)法進(jìn)行加權(quán)的組合分析法,構(gòu)建綜合調(diào)度模型,提高電價(jià)調(diào)度的準(zhǔn)確度和有效性。
[Abstract]:The demand response can realize the effective resource interaction between the power supply side and the power side, and improve the efficiency and reliability of the system. Compared with the traditional method of increasing peak-shaving power or strengthening power grid construction, the effective use of demand-side resources can greatly reduce the investment pressure of infrastructure. At present, most of the demand response projects based on incentives are aimed at industrial users. Although the individual capacity of residents, businesses and offices is small, the number of users is large, and they are widely distributed, so they have a great potential for demand response. And more suitable for the development of electricity-based demand response project. Therefore, it is the basic work for the application of demand response to carry out the analysis of the user's power consumption behavior in the intelligent power environment. In this paper, a multi-dimensional load classification system is built based on the power consumption monitoring of a single user. According to the typical power load classification, the power load of a single user is decomposed, and the power consumption behavior of multiple users is analyzed. A user cluster with different price sensitivity is formed. A real-time market environment is constructed for the aggregate users, and the electricity price scheduling for the aggregate users is realized. First of all, the necessity and feasibility of user participation in demand response are analyzed, and the current development and application of demand response at home and abroad are summarized. The analysis of electrical behavior and the identification of model parameters summarize the current research situation in academic circles and lay a foundation for the further study of this paper. Secondly, for a single user, considering the shortcomings of current load decomposition methods, a multi-dimensional load classification system is proposed, which is based on the functional dimension, considering the usage and characteristics of the equipment commonly used by users. Time dimension and power dimension are used to classify equipment, and user load decomposition model is constructed based on fuzzy membership function. The reliability of load decomposition result is represented by fuzzy membership degree, and user power load decomposition is realized. Provides the basis for potential analysis of demand response projects. Then, for multiple users, based on the improved K-Means clustering algorithm, under the peak-valley electricity price environment, the power consumption ratio and load rate of each period of peak and valley level are selected as the characteristics of the user, and the electricity behavior clustering model is constructed. Based on the clustering analysis of the user's electricity consumption behavior and the change of the user's electricity consumption before and after the price conversion point, the calculation method of the user's price sensitivity is put forward, and the user screening model is constructed. In order to determine the appropriate price response to the sensitive object. Finally, for aggregate users, in the real-time market environment based on consumer psychology, support vector machine is used to identify the model parameters, and the calculation model of demand response price is constructed. And the electricity price scheduling error and application scenario are analyzed. By comparing the errors obtained by artificial neural network and regression analysis, a combined analysis method weighted by these three parameter identification methods is proposed to construct a comprehensive scheduling model to improve the accuracy and effectiveness of electricity price scheduling.
【學(xué)位授予單位】:東南大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類(lèi)號(hào)】:TM73

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 劉立祥;;線(xiàn)性回歸模型中自變量的選擇與逐步回歸方法[J];統(tǒng)計(jì)與決策;2015年21期

2 趙齊;常瀚思;段清偉;;階梯電價(jià)對(duì)城市居民用電行為影響分析[J];合作經(jīng)濟(jì)與科技;2015年22期

3 郭曉利;于陽(yáng);;基于云計(jì)算的家庭智能用電策略[J];電力系統(tǒng)自動(dòng)化;2015年17期

4 王爽;;對(duì)“回歸分析”的再認(rèn)識(shí)[J];數(shù)學(xué)通報(bào);2015年07期

5 周小明;蘇安龍;楊宏宇;;基于K-Means聚類(lèi)算法的行業(yè)用電行為分析[J];電氣應(yīng)用;2015年S1期

6 馬釗;梁惠施;蘇劍;;主動(dòng)配電系統(tǒng)規(guī)劃和運(yùn)行中的重要問(wèn)題[J];電網(wǎng)技術(shù);2015年06期

7 林高翔;錢(qián)碧甫;郭亮;孫紅靜;;一種考慮居民經(jīng)濟(jì)承受力的生活用電電價(jià)可調(diào)整空間模型[J];電網(wǎng)與清潔能源;2014年11期

8 張少敏;趙碩;王保義;;基于云計(jì)算和量子粒子群算法的電力負(fù)荷曲線(xiàn)聚類(lèi)算法研究[J];電力系統(tǒng)保護(hù)與控制;2014年21期

9 王珂;姚建國(guó);姚良忠;楊勝春;雍太有;;電力柔性負(fù)荷調(diào)度研究綜述[J];電力系統(tǒng)自動(dòng)化;2014年20期

10 蘇杰和;陳旭;張勇軍;;基于模糊隸屬度及區(qū)間算術(shù)的電網(wǎng)電壓優(yōu)化新算法[J];電力系統(tǒng)保護(hù)與控制;2014年20期

相關(guān)博士學(xué)位論文 前1條

1 范昕煒;支持向量機(jī)算法的研究及其應(yīng)用[D];浙江大學(xué);2003年

相關(guān)碩士學(xué)位論文 前1條

1 吳曉蓉;K-均值聚類(lèi)算法初始中心選取相關(guān)問(wèn)題的研究[D];湖南大學(xué);2008年

,

本文編號(hào):2393518

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/2393518.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶(hù)9fa3d***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com