天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 科技論文 > 電氣論文 >

考慮曲線特征和多影響因素的售電量預測關鍵技術研究與應用

發(fā)布時間:2018-12-25 15:34
【摘要】:售電量是電網(wǎng)企業(yè)重要的經(jīng)濟考核指標,月度售電量預測工作是電網(wǎng)企業(yè)營銷部門一項重要的日常工作,準確的進行月度售電量預測可以為電網(wǎng)企業(yè)提供營銷決策支持,對制定增供擴銷計劃、開展電能替代、實施有序用電方案、提升客戶服務品質(zhì)等具有重要意義。目前各電網(wǎng)企業(yè)月度售電量預測多采用對比分析、結構分析、回歸分析、神經(jīng)網(wǎng)絡等方法。這些方法可在一定程度上對售電量進行預測,但對國家電網(wǎng)公司整體售電量預測精度并不是很理想,其主要原因是沒有考慮國家電網(wǎng)公司各地區(qū)售電量曲線的不同特征,只利用一種預測算法對多地區(qū)的售電量進行預測,這樣必然會導致預測精度不高。為解決上述問題,本文提出了兩種方法。一種是基于歷史曲線的售電量預測方法。根據(jù)國家電網(wǎng)公司及下屬27家省(市)公司售電量曲線在時域和頻域下的特征,對27家省(市)公司進行聚類。對不同類別的省(市)公司,根據(jù)售電量曲線特征與預測算法(SVM回歸、BP神經(jīng)網(wǎng)絡、ARIMA等)的適配性,選擇相應的預測方法,對同一類別內(nèi)的省(市)公司采用同一種預測算法。在基于歷史曲線的售電量預測的基礎上,本文將天氣、經(jīng)濟、節(jié)假日和社會事件等影響因素納入考慮,建立基于SVM回歸的售電量預測修正模型,根據(jù)影響因素的月度售電量預測修正模型,進一步提高預測精度。另一種方法是考慮春節(jié)因素的售電量調(diào)整方法,該方法首先利用歷史年第一季度每月售電量占季度比重和第一季度每月1日距離當年春節(jié)的天數(shù)建立函數(shù)關系,天數(shù)為輸入,占季度比為輸出,利用得到的一元函數(shù)預測1、2、3月份售電量占季度比,進而根據(jù)預測的占季度比及調(diào)整前售電量預測值得到基于春節(jié)因素調(diào)整后1、2、3月份預測值。利用本文的預測方法,以國家電網(wǎng)公司2010年至2014年的售電量數(shù)據(jù)作為歷史數(shù)據(jù),對國家電網(wǎng)公司2015年每月的售電量進行預測,然后和實際的2015年售電量比較,預測平均誤差為1.78%,結果表明,本文提出的售電量預測方法可靠,有效,且精度較高。
[Abstract]:Electricity sales is an important economic assessment index for power grid enterprises. Monthly electricity sales forecasting is an important daily work of power grid enterprise marketing department. Accurate monthly electricity sales prediction can provide marketing decision support for power grid enterprises. It is of great significance to make the plan of increasing supply and expanding sales, to carry out electric energy substitution, to carry out orderly power consumption scheme, and to improve the quality of customer service. At present, the monthly electricity sales forecast of power grid enterprises mostly adopts the methods of comparative analysis, structure analysis, regression analysis, neural network and so on. These methods can be used to predict the electricity sales to a certain extent, but the accuracy of the overall electricity sales prediction of the State Grid Company is not very good. The main reason is that the different characteristics of the electricity sales curves in the various regions of the State Grid Company are not considered. Only one prediction algorithm is used to predict the electricity sales in many areas, which will inevitably lead to the low accuracy of the prediction. In order to solve the above problems, two methods are proposed in this paper. One is the forecasting method of electricity sales based on historical curve. According to the characteristics of the electricity sales curve of the State Grid Company and 27 provincial (municipal) companies in the time domain and the frequency domain, 27 provincial (municipal) companies were clustered. According to the characteristics of the sales curve and the adaptability of the prediction algorithm (SVM regression, BP neural network, ARIMA etc.), the corresponding forecasting methods are selected for different kinds of provincial (municipal) companies. The same prediction algorithm is used for provincial (municipal) companies in the same category. On the basis of forecasting electricity sales based on historical curve, this paper takes weather, economy, holidays and social events into account, and establishes a revised model of electricity sales forecasting based on SVM regression. The forecast accuracy is further improved according to the monthly electricity sales forecast correction model based on the influencing factors. Another method is to take into account the factors of the Spring Festival to adjust electricity sales. Firstly, the method uses the proportion of electricity sales per month in the first quarter of a historical year and the number of days between the first quarter and the Spring Festival in the first quarter to establish a functional relationship. The number of days is input. The ratio of quarter to quarter is output, and the one-variable function is used to forecast the quarterly ratio of electricity sales in March, and then according to the predicted quarterly ratio and the forecast value of electricity sales before adjustment, the forecast value for March is based on the adjustment of Spring Festival factor. Using the forecasting method of this paper, taking the electricity sales data of State Grid Company from 2010 to 2014 as historical data, this paper forecasts the monthly electricity sales of State Grid Company in 2015, and then compares with the actual electricity sales in 2015. The average error of prediction is 1.78. The results show that the method proposed in this paper is reliable, effective and accurate.
【學位授予單位】:華北電力大學(北京)
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TM715

【參考文獻】

相關期刊論文 前10條

1 顏偉;程超;薛斌;李丹;陳飛;王順昌;;結合X12乘法模型和ARIMA模型的月售電量預測方法[J];電力系統(tǒng)及其自動化學報;2016年05期

2 李英惠;胥超;;基于時間序列模型的售電量預測方法[J];山東電力技術;2014年06期

3 王偉;楊輝華;劉振丙;李靈巧;;基于極限學習機的短期電力負荷預測[J];計算機仿真;2014年04期

4 王奕萱;;基于統(tǒng)計特征量和支持向量機的短期售電量預測研究[J];華北電力技術;2013年12期

5 潘小輝;劉麗萍;李揚;;提高月度售電量預測精度的一種新方法[J];電力需求側管理;2013年03期

6 段樹喬;段方婕;;基于多項式回歸函數(shù)的電網(wǎng)公司售電量預測方法[J];數(shù)學的實踐與認識;2012年18期

7 楊云瑩;任玉瓏;段鍇;;基于虛擬變量與時間序列法的電量需求預測[J];電力需求側管理;2011年05期

8 曹葵康;沈海斌;;基于多樣本的在線支持向量回歸算法[J];浙江大學學報(理學版);2011年04期

9 張士強;王雯;王健;;ARIMA模型在城市年用電量預測中的應用[J];電力需求側管理;2010年06期

10 汪滔;張偉;呂萌明;汪l,

本文編號:2391306


資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/2391306.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權申明:資料由用戶6fd4a***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com