PMSM無(wú)位置傳感器混合控制策略研究
[Abstract]:Permanent magnet synchronous motor (PMSM) is widely used in modern industrial society, especially in the field of electrical transmission. Vector control strategy is usually used for high performance PMSM drive. Real-time rotor position information is indispensable. The traditional position sensor will bring many problems. Using the position sensor control technology instead of the position sensor can reduce the cost of the control system, reduce the volume and weight, increase the power density, be more reliable and easy to install. Therefore, sensorless control technology has high research value. In this paper, the position sensorless control algorithm of PMSM is taken as the main research content, and the accurate observation of rotor position and speed can be realized in the whole speed range. A hybrid control strategy without position sensor is proposed. The control technology can be used in washing machines, air-conditioners and other household appliances, or in electric vehicle driving systems and other occasions. In the position sensorless hybrid control strategy proposed in this paper, the improved high frequency voltage injection method is used in the zero and low speed operation section, and the improved sliding mode observer method is used in the middle and high speed section. The complete implementation of the control strategy is given. In this paper, the improvement of the traditional high frequency voltage injection method mainly includes two aspects. One is to introduce the characteristic harmonic elimination method to replace the low-pass filter in the current feedback loop. It avoids the problems of phase lag and incomplete filtering brought by filter. Secondly, using phasor method to deduce the high frequency current carefully, considering the influence of armature winding resistance neglected in the traditional scheme, putting forward the corresponding compensation strategy, thus making the estimation of rotor position and speed more accurate. Thus, better dynamic and static control performance is obtained. In this paper, an improved sliding mode observer method is proposed in the middle and high speed region. The sliding mode observer is constructed for two kinds of PMSM, namely, the surface mount observer and the embedded one. The buffeting strategy of the traditional sliding mode observer method is designed for the buffeting problem of the traditional sliding mode observer method. The accuracy of position and speed estimation is improved. In order to widen the speed range of PMSM, the MTPA control is used under the rated speed and the weak magnetic field control is used above the rated speed. The MTPA and the weak magnetic algorithm designed in this paper take into account the change of inductance parameters. For the proposed position sensorless hybrid control strategy, the switching method of high frequency voltage injection and sliding mode observer and the switching method between MTPA and weak magnetic field control are also designed. In order to verify the proposed control strategy, this paper simulates the proposed control strategy in Matlab/Simulink, and carries out experimental verification on a set of industrial PMSM driver hardware platform. The experiments such as starting, speed step setting, torque mutation and efficiency measurement are carried out. The simulation and experimental results show that the proposed control strategy has a high accuracy for the estimation of rotor position and speed, and the closed-loop control has good steady and dynamic performance and can be started. The smooth switching between the two sensorless strategies and the high speed weak magnetic field operation prove the effectiveness and advantage of the proposed hybrid control strategy. The control strategy can be extended to household appliances, electric vehicles and other occasions.
【學(xué)位授予單位】:浙江大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TM341
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 董富紅,沈艷霞,紀(jì)志成;永磁無(wú)刷直流電機(jī)無(wú)位置傳感器估計(jì)方法綜述[J];微電機(jī)(伺服技術(shù));2003年05期
2 陳志勇,高海歐;無(wú)位置傳感器的方波驅(qū)動(dòng)無(wú)刷直流電機(jī)控制系統(tǒng)[J];科技資訊;2005年22期
3 李翠萍;王新生;高陽(yáng);;無(wú)位置傳感器永磁同步電動(dòng)機(jī)控制系統(tǒng)[J];微特電機(jī);2007年12期
4 文宇良;張朝陽(yáng);劉雄;何亞屏;許峻峰;;基于無(wú)位置傳感器的永磁同步電機(jī)帶速度重新投入控制算法研究[J];大功率變流技術(shù);2012年03期
5 何棟煒;彭俠夫;周結(jié)華;;一種改進(jìn)的永磁同步電機(jī)無(wú)位置傳感器直接轉(zhuǎn)矩控制[J];福州大學(xué)學(xué)報(bào)(自然科學(xué)版);2008年S1期
6 文永明,沈傳文,蘇彥民;基于無(wú)位置傳感器的永磁電機(jī)控制技術(shù)綜述[J];微電機(jī)(伺服技術(shù));2002年06期
7 李玉忍,謝利理,齊蓉,林輝;永磁同步電機(jī)無(wú)位置傳感器調(diào)速系統(tǒng)的研究[J];西北工業(yè)大學(xué)學(xué)報(bào);2003年04期
8 韓則胤;鄧志奇;陳陽(yáng)生;;車用空調(diào)系統(tǒng)中無(wú)位置傳感器技術(shù)的應(yīng)用[J];機(jī)電工程;2010年06期
9 劉寧莊;李中軍;劉華旭;;一種帶通濾波器在無(wú)位置傳感器轉(zhuǎn)子檢測(cè)中的應(yīng)用[J];微電機(jī);2014年04期
10 李先祥,羅中良,徐小增,肖紅軍;無(wú)位置傳感器的永磁同步電機(jī)直接轉(zhuǎn)矩控制系統(tǒng)[J];蘭州大學(xué)學(xué)報(bào);2005年04期
相關(guān)會(huì)議論文 前7條
1 王欽恒;費(fèi)浙平;;三相無(wú)刷無(wú)位置傳感器電機(jī)在硬盤(pán)中的應(yīng)用[A];第七屆中國(guó)小電機(jī)技術(shù)研討會(huì)論文集[C];2002年
2 鄒積濤;白山;劉一恒;;潛油式永磁同步直線抽油機(jī)無(wú)位置傳感器控制系統(tǒng)研究[A];2008中國(guó)電工技術(shù)學(xué)會(huì)電力電子學(xué)會(huì)第十一屆學(xué)術(shù)年會(huì)論文摘要集[C];2008年
3 梁業(yè)庭;;一種新型無(wú)位置傳感器算法的實(shí)現(xiàn)[A];湖北省電工技術(shù)學(xué)會(huì)、武漢電工技術(shù)學(xué)會(huì)2013年度學(xué)術(shù)年會(huì)、第五屆“智能電網(wǎng)”暨“電機(jī)能效提升”發(fā)展論壇論文集[C];2013年
4 王斌;吳冬燕;;ACFO無(wú)位置傳感器變頻空調(diào)控制系統(tǒng)[A];中國(guó)制冷學(xué)會(huì)2005年制冷空調(diào)學(xué)術(shù)年會(huì)論文集[C];2005年
5 石會(huì);陳志輝;;基于MC56F8013&EKF算法的無(wú)位置傳感器PMSM調(diào)速系統(tǒng)[A];2006中國(guó)電工技術(shù)學(xué)會(huì)電力電子學(xué)會(huì)第十屆學(xué)術(shù)年會(huì)論文摘要集[C];2006年
6 王進(jìn);;永磁無(wú)刷直流電機(jī)無(wú)位置感應(yīng)器控制策略現(xiàn)狀及趨勢(shì)[A];湖北省電工技術(shù)學(xué)會(huì)2004年學(xué)術(shù)年會(huì)論文集[C];2004年
7 孫可;陳慧;;EPS用永磁同步電機(jī)無(wú)位置傳感器混合控制[A];面向未來(lái)的汽車與交通——2013中國(guó)汽車工程學(xué)會(huì)年會(huì)論文集精選[C];2013年
相關(guān)博士學(xué)位論文 前2條
1 張伯澤;內(nèi)置式永磁同步電機(jī)無(wú)位置傳感器復(fù)合控制研究[D];上海大學(xué);2016年
2 吳元元;高速永磁無(wú)刷直流電機(jī)電磁場(chǎng)理論以及無(wú)位置傳感器技術(shù)的研究[D];南京航空航天大學(xué);2012年
相關(guān)碩士學(xué)位論文 前10條
1 肖宏偉;基于無(wú)位置傳感器的直驅(qū)風(fēng)電機(jī)側(cè)三電平變流器研究[D];燕山大學(xué);2015年
2 高江魁;無(wú)位置傳感器的永磁無(wú)刷直流電機(jī)運(yùn)行控制研究[D];西南交通大學(xué);2015年
3 鞏洪峰;三相永磁容錯(cuò)電機(jī)無(wú)位置傳感器矢量控制系統(tǒng)研究[D];大連海事大學(xué);2015年
4 薄聰;基于MC56F84789風(fēng)機(jī)驅(qū)動(dòng)系統(tǒng)設(shè)計(jì)[D];哈爾濱工業(yè)大學(xué);2015年
5 楊遠(yuǎn)彬;新能源汽車用凸極永磁同步電機(jī)滑模無(wú)位置傳感器研究[D];哈爾濱工業(yè)大學(xué);2015年
6 李潔;基于脈振高頻信號(hào)注入SPMSM低速無(wú)位置傳感器技術(shù)研究[D];南京航空航天大學(xué);2015年
7 朱洲;SRM電動(dòng)汽車驅(qū)動(dòng)系統(tǒng)無(wú)位置傳感器控制策略研究[D];哈爾濱工業(yè)大學(xué);2016年
8 范方方;無(wú)位置傳感器的直流無(wú)刷電機(jī)控制系統(tǒng)研究[D];中國(guó)海洋大學(xué);2015年
9 丁洋洋;無(wú)位置傳感器永磁同步電機(jī)控制研究與設(shè)計(jì)[D];合肥工業(yè)大學(xué);2016年
10 劉二豪;外轉(zhuǎn)子永磁無(wú)刷直流電機(jī)無(wú)位置傳感器控制[D];西北工業(yè)大學(xué);2015年
,本文編號(hào):2384529
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/2384529.html