一維納米材料網(wǎng)格結(jié)構(gòu)透明超級(jí)電容器的研究
[Abstract]:With the rapid development of transparent electronic devices, transparent batteries and supercapacitors have attracted extensive research interest. However, the preparation of transparent energy equipment faces great challenges. It requires that the components involved include fluid collection, electrode materials, membranes, and electrolytes with transparent properties. Although some fully transparent supercapacitors can use H3P04 (or H2SO4) / PVA (polyvinyl alcohol) gels as electrolytes and membranes, due to their rheological properties and variability, It is difficult to control the thickness of these gel electrolyte membranes between the two electrodes, which makes it difficult to repeatedly produce supercapacitors with good stability. In order to control the distance between the two electrodes, some devices choose opaque commercial diaphragm (such as Celgard microporous membrane), neglecting the initial intention of fabricating transparent devices. Therefore, it is very important to develop a stable structure and compatible diaphragm for transparent energy storage devices. In this paper, polystyrene (PS) microspheres are used as electrode spacers to replace traditional membranes such as polypropylene and cellulose membrane paper. On this basis, transparent supercapacitors were prepared by using carbon nanotube (CNTs) and indium tin oxide (ITO) glass as active materials and collecting fluid, respectively. The main progress is as follows: 1. Single walled carbon nanotubes (SWCNT) were loaded on ITO/ glass to make transparent electrodes. Transparent supercapacitors were prepared by using LiCl/PVA sol as electrolyte and PS ball as electrode spacer. By changing the particle size of PS (10 ~ 20 ~ 40 渭 m), the distance between electrodes is regulated, and the transmittance of the electrode is regulated by changing the coverage of SWCNT. The experimental results show that the transparent supercapacitor with 20 micron diameter PS ball has the best performance. When the transmittance of the whole device is 80.8, its area specific capacitance reaches 66 渭 F / cm ~ 2, and the Coulomb efficiency exceeds 922.2. In order to further improve the specific capacitance of supercapacitors, transparent supercapacitors were prepared using manganese dioxide modified multi-walled carbon nanotubes (Mn02/MWCNT) as composite electrode materials. Compared with the pure MWCNT electrode, the specific capacitance of the Mn02/MWCNT transparent supercapacitor is increased by an order of magnitude. Similarly, the amount of Mn02/MWCNT deposition determines the transmittance of the electrode and the capacity of the supercapacitor. When the transmittance of the device is 78.9, the specific capacitance reaches 678 渭 F / cm ~ 2, and its capacity remains at 88.60.3after 1000 charge-discharge cycles. Flexible transparent gold mesh / PET or ITO/PET instead of rigid ITO glass was used as a fluid collector to construct all-solid-state flexible transparent supercapacitors. The flexible transparent supercapacitor shows good electrochemical performance. The specific capacitance reaches 952.5 渭 F / cm ~ 2 at 48 渭 F / cm ~ (2), and the specific capacitance can still keep 87.4% after 1000 cycles of charge and discharge cycle. At the same time, at different bending degrees (0 擄, 45 擄, 90 擄, 135 擄, 180 擄), the electrochemical performance is still very good. After bending 180 擄, the specific capacitance remains about 80% of the original value, which indicates that the capacitance has good flexibility.
【學(xué)位授予單位】:南京郵電大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TM53;TB383.1
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 陳新麗;李偉善;;超級(jí)電容器電極材料的研究現(xiàn)狀與發(fā)展[J];廣東化工;2006年07期
2 許開卿;吳季懷;范樂(lè)慶;冷晴;鐘欣;蘭章;黃妙良;林建明;;水凝膠聚合物電解質(zhì)超級(jí)電容器研究進(jìn)展[J];材料導(dǎo)報(bào);2011年15期
3 梓文;;超高能超級(jí)電容器[J];兵器材料科學(xué)與工程;2013年04期
4 ;歐盟創(chuàng)新型大功率超級(jí)電容器問(wèn)世[J];功能材料信息;2014年01期
5 周霞芳;;無(wú)污染 充電快 春節(jié)后有望面市 周國(guó)泰院士解密“超級(jí)電容器”[J];環(huán)境與生活;2012年01期
6 江奇,瞿美臻,張伯蘭,于作龍;電化學(xué)超級(jí)電容器電極材料的研究進(jìn)展[J];無(wú)機(jī)材料學(xué)報(bào);2002年04期
7 朱修鋒,王君,景曉燕,張密林;超級(jí)電容器電極材料[J];化工新型材料;2002年04期
8 景茂祥,沈湘黔,沈裕軍,鄧春明,翟海軍;超級(jí)電容器氧化物電極材料的研究進(jìn)展[J];礦冶工程;2003年02期
9 朱磊,吳伯榮,陳暉,劉明義,簡(jiǎn)旭宇,李志強(qiáng);超級(jí)電容器研究及其應(yīng)用[J];稀有金屬;2003年03期
10 賀福;碳(炭)材料與超級(jí)電容器[J];高科技纖維與應(yīng)用;2005年03期
相關(guān)會(huì)議論文 前10條
1 馬衍偉;張熊;余鵬;陳堯;;新型超級(jí)電容器納米電極材料的研究[A];2009中國(guó)功能材料科技與產(chǎn)業(yè)高層論壇論文集[C];2009年
2 張易寧;何騰云;;超級(jí)電容器電極材料的最新研究進(jìn)展[A];第二十八屆全國(guó)化學(xué)與物理電源學(xué)術(shù)年會(huì)論文集[C];2009年
3 鐘輝;曾慶聰;吳丁財(cái);符若文;;聚苯乙烯基層次孔碳的活化及其在超級(jí)電容器中的應(yīng)用[A];中國(guó)化學(xué)會(huì)第15屆反應(yīng)性高分子學(xué)術(shù)討論會(huì)論文摘要預(yù)印集[C];2010年
4 趙家昌;賴春艷;戴揚(yáng);解晶瑩;;扣式超級(jí)電容器組的研制[A];第十二屆中國(guó)固態(tài)離子學(xué)學(xué)術(shù)會(huì)議論文集[C];2004年
5 單既成;陳維英;;超級(jí)電容器與通信備用電源[A];通信電源新技術(shù)論壇——2008通信電源學(xué)術(shù)研討會(huì)論文集[C];2008年
6 王燕;吳英鵬;黃毅;馬延風(fēng);陳永勝;;單層石墨用作超級(jí)電容器的研究[A];2009年全國(guó)高分子學(xué)術(shù)論文報(bào)告會(huì)論文摘要集(上冊(cè))[C];2009年
7 趙健偉;倪文彬;王登超;黃忠杰;;超級(jí)電容器電極材料的設(shè)計(jì)、制備及性質(zhì)研究[A];中國(guó)化學(xué)會(huì)第27屆學(xué)術(shù)年會(huì)第10分會(huì)場(chǎng)摘要集[C];2010年
8 張琦;鄭明森;董全峰;田昭武;;基于薄液層反應(yīng)的新型超級(jí)電容器——多孔碳電極材料的影響[A];中國(guó)化學(xué)會(huì)第27屆學(xué)術(shù)年會(huì)第10分會(huì)場(chǎng)摘要集[C];2010年
9 馬衍偉;;新型超級(jí)電容器石墨烯電極材料的研究[A];第七屆中國(guó)功能材料及其應(yīng)用學(xué)術(shù)會(huì)議論文集(第7分冊(cè))[C];2010年
10 劉不厭;彭喬;孫s,
本文編號(hào):2373112
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/2373112.html