基于機(jī)器視覺的加熱片表面缺陷檢測(cè)技術(shù)研究
[Abstract]:Thermal battery is an important military power source, widely used in missile, naval vessel, nuclear weapon and civil aviation, etc. The heating plate is an important part of the heating system of thermal battery, which provides heat for thermal battery. Its quality directly affects whether the thermal battery works normally. The manufacturing process of heating sheet is divided into powder production, powder mixing, pressing forming and appearance inspection. At the present stage, powder production, mixing and compaction have been realized automatically and domestically, but the appearance inspection of heating sheet still depends on manual inspection, which seriously restricts the production efficiency of heating sheet. It is also difficult to guarantee the quality of the heating sheet. The heating sheet is prepared by mixing and compacting active iron powder and potassium perchlorate powder. The main task of the surface defect detection of the heating sheet is to quickly distinguish the perfect heating sheet from the defective product, and at the same time to identify the four kinds of defects of the defective heating sheet, that is, falling edge, burr, inclusion and crack defect. Firstly, the hardware of the heating slice vision detection system is designed, and the hardware of insight7050 vision system is selected. After the hardware system is installed and debugged, the image of the heating slice is collected by the system, and the image is obtained which is propitious to the algorithm. Secondly, in image preprocessing, an adaptive binarization threshold of the edge of anti-noise morphology is proposed. On this basis, to avoid the interference of the background of the heated slice image to the processing results, a foreground extraction algorithm based on the noise-resistant swelling corrosion morphological edge is proposed. In addition, in order to realize the fast classification of perfect heating sheets and defective products, a new algorithm of suspected defect detection based on noise-resistant morphological edge is proposed. Thirdly, an improved Catte_pm model image enhancement algorithm based on Gao Si high-frequency emphasis filter and the improved Catte_pm model image enhancement algorithm is proposed for the shadow region, the highlight region, the shadow highlight area and the surface texture of the heated slice image. Thirdly, an improved minimum error method is proposed for the failure of the minimum error method caused by the background of the heated slice image. In addition, the recognition accuracy of defect classification methods based on statistical feature, principal component analysis and support vector machine, principal component analysis and neural network is analyzed and compared. The relationship between dimensionality reduction and recognition accuracy of two classification methods based on principal component analysis is studied. Finally, the software subsystem is developed, and its function and technical index are verified. The experiments show that the algorithm realizes the fast classification of perfect heating plates and defective products, and it has a high recognition accuracy for four kinds of defects, such as missing edges, burrs, inclusions and cracks.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP391.41;TM915
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 鄭紅波;陳宇;趙海;秦緒佳;張美玉;;紋理去除的皮革圖像顏色分類方法[J];計(jì)算機(jī)科學(xué);2016年S2期
2 張建偉;雷霖;余化鵬;黃毅;;基于形態(tài)學(xué)的硬幣鏡面區(qū)域缺陷檢測(cè)算法研究[J];成都大學(xué)學(xué)報(bào)(自然科學(xué)版);2016年03期
3 王義文;屈冠彤;付鵬強(qiáng);李強(qiáng);梅恒;;基于機(jī)器視覺的光柵表面缺陷檢測(cè)系統(tǒng)[J];光電工程;2016年09期
4 廖梓龍;鐘守炎;;基于機(jī)器視覺大數(shù)據(jù)分析的表面貼裝缺陷檢測(cè)[J];機(jī)電工程技術(shù);2016年08期
5 黃志鴻;毛建旭;王耀南;周顯恩;歷艷琨;劉學(xué)兵;;基于機(jī)器視覺的啤酒瓶口缺陷檢測(cè)分類方法研究[J];電子測(cè)量與儀器學(xué)報(bào);2016年06期
6 張宏釗;周松斌;劉偉鑫;;基于機(jī)器視覺的圓形馬口鐵罐罐口缺陷檢測(cè)[J];自動(dòng)化與信息工程;2016年01期
7 吳一全;孟天亮;吳詩(shī)Zs;;圖像閾值分割方法研究進(jìn)展20年(1994—2014)[J];數(shù)據(jù)采集與處理;2015年01期
8 林天圓;王杰;李金屏;;一種光照不均勻圖像的灰度校正方法[J];濟(jì)南大學(xué)學(xué)報(bào)(自然科學(xué)版);2015年06期
9 王傳東;;熱電池發(fā)展綜述[J];電源技術(shù);2013年11期
10 申小平;許桂生;;粉末冶金壓坯缺陷分析[J];粉末冶金技術(shù);2012年04期
相關(guān)博士學(xué)位論文 前3條
1 韓芳芳;表面缺陷視覺在線檢測(cè)關(guān)鍵技術(shù)研究[D];天津大學(xué);2012年
2 楊水山;冷軋帶鋼表面缺陷機(jī)器視覺自動(dòng)檢測(cè)技術(shù)研究[D];哈爾濱工業(yè)大學(xué);2009年
3 鄭連清;火工品壓藥關(guān)鍵工藝與設(shè)備研究[D];重慶大學(xué);2005年
相關(guān)碩士學(xué)位論文 前4條
1 石聰;磁材表面缺陷視覺檢測(cè)方法[D];哈爾濱工業(yè)大學(xué);2013年
2 蔣東升;基于數(shù)學(xué)形態(tài)學(xué)的邊緣檢測(cè)算法研究[D];電子科技大學(xué);2012年
3 付國(guó)文;基于Retinex的圖像增強(qiáng)算法研究及實(shí)現(xiàn)[D];上海交通大學(xué);2011年
4 吳仕勇;基于數(shù)值計(jì)算方法的BP神經(jīng)網(wǎng)絡(luò)及遺傳算法的優(yōu)化研究[D];云南師范大學(xué);2006年
,本文編號(hào):2364467
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/2364467.html