基于關(guān)聯(lián)規(guī)則的電力系統(tǒng)暫態(tài)穩(wěn)定評(píng)估方法研究
[Abstract]:Transient stability assessment of power system is one of the important problems to ensure the safe and stable operation of power system. The traditional time domain simulation method and direct method both meet the bottleneck problem which is difficult to overcome. With the expansion of power system network, the calculation speed of time-domain simulation method is difficult to meet the need of on-line monitoring and control. However, the application of direct method in power system is limited by the problem that it is difficult to be applied to complex model. In recent years, with the rapid development of cloud computing, big data and other information technology, as well as the wide application in the power industry, the power system transient stability assessment method based on machine learning technology provides a new direction for on-line stability assessment. And gradually made great progress. This kind of method has the advantages of strong generalization ability, fast evaluation speed and the ability to mine key operation information, so it has a broad development prospect in the field of on-line transient stability assessment of power systems. In this paper, the association rule algorithm of machine learning technology is introduced into the study of power system transient stability evaluation. On the basis of summing up and analyzing the previous work, the stable discriminant rules which are reliable and easy to understand are mined from the operation data of power grid, which provides support for intelligent decision making in the operation of large power grid. First of all, the establishment of stable information database is completed. On the one hand, the automatic simulation and calculation interface program of PSD-BPA software is developed to simulate transient stability of New England 10-machine 39-bus system under different operation modes, and a mass of simulation samples are generated. On the other hand, the historical data of a cross-region power grid in the online security analysis system are collated as another sample set of data to be studied. Secondly, a feature selection method based on the combination of weighted stochastic forest and recursive feature elimination strategy is proposed to find out the key features and factors that affect the stability level, and to remove redundant input features. Improve the efficiency of computing association rules and the interpretability of rules. Then, because most of the system state variables are continuous, discrete continuous feature is one of the necessary data preprocessing steps for association rules. On the basis of summarizing the shortcomings of Chi Merge discretization algorithm, this chapter improves the algorithm and uses the improved algorithm to discretize the continuous data into each discrete interval. Finally, on the basis of the previous chapters, the association rule analysis algorithm based on FP-Growth algorithm is applied to power system transient stability evaluation, and the construction of transient stability assessment rule base is preliminarily completed. The function and significance of some rules are analyzed.
【學(xué)位授予單位】:華北電力大學(xué)(北京)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TM712
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張春;田芳;于之虹;李巖松;張爽;田蓓;;改進(jìn)Sammon映射算法在分析暫態(tài)穩(wěn)定評(píng)估輸入特征有效性中的應(yīng)用[J];電力建設(shè);2016年12期
2 趙晉泉;鄧暉;吳小辰;徐光虎;金小明;張勇;;基于廣域響應(yīng)的電力系統(tǒng)暫態(tài)穩(wěn)定控制技術(shù)評(píng)述[J];電力系統(tǒng)保護(hù)與控制;2016年05期
3 李亞樓;張星;李勇杰;陳緒江;吳茂乾;;交直流混聯(lián)大電網(wǎng)仿真技術(shù)現(xiàn)狀及面臨挑戰(zhàn)[J];電力建設(shè);2015年12期
4 黃天恩;孫宏斌;郭慶來;溫柏堅(jiān);王彬;;基于電網(wǎng)運(yùn)行仿真大數(shù)據(jù)的知識(shí)管理和超前安全預(yù)警[J];電網(wǎng)技術(shù);2015年11期
5 于之虹;黃彥浩;魯廣明;史東宇;周孝信;嚴(yán)劍峰;卜廣全;田芳;李亞樓;;基于時(shí)間序列關(guān)聯(lián)分析的穩(wěn)定運(yùn)行規(guī)則提取方法[J];中國電機(jī)工程學(xué)報(bào);2015年03期
6 王亞俊;王波;唐飛;陳得治;王靜;王乙斐;周雨田;;基于響應(yīng)軌跡和核心向量機(jī)的電力系統(tǒng)在線暫態(tài)穩(wěn)定評(píng)估[J];中國電機(jī)工程學(xué)報(bào);2014年19期
7 金洲;王儒敬;;基于信息熵的興趣度規(guī)則挖掘算法[J];模式識(shí)別與人工智能;2014年06期
8 吳為;湯涌;孫華東;徐式蘊(yùn);;基于廣域量測信息的電力系統(tǒng)暫態(tài)穩(wěn)定研究綜述[J];電網(wǎng)技術(shù);2012年09期
9 李晨;蔣德瓏;程生安;;電力系統(tǒng)暫態(tài)穩(wěn)定分析方法的現(xiàn)狀與發(fā)展[J];現(xiàn)代電子技術(shù);2012年16期
10 桑雨;李克秋;閆德勤;;基于改進(jìn)χ2統(tǒng)計(jì)的數(shù)據(jù)離散化算法[J];大連理工大學(xué)學(xué)報(bào);2012年03期
相關(guān)博士學(xué)位論文 前4條
1 李楊;基于廣域動(dòng)態(tài)信息的電力系統(tǒng)暫態(tài)穩(wěn)定評(píng)估研究[D];華北電力大學(xué);2014年
2 吳為;基于響應(yīng)的電力系統(tǒng)暫態(tài)穩(wěn)定性實(shí)時(shí)判別與控制技術(shù)的研究[D];中國電力科學(xué)研究院;2014年
3 孫鑫;機(jī)器學(xué)習(xí)中特征選問題研究[D];吉林大學(xué);2013年
4 葉圣永;基于機(jī)器學(xué)習(xí)的電力系統(tǒng)暫態(tài)穩(wěn)定評(píng)估研究[D];西南交通大學(xué);2010年
相關(guān)碩士學(xué)位論文 前10條
1 黎萌;電力系統(tǒng)暫態(tài)穩(wěn)定時(shí)域仿真終止判據(jù)的研究[D];浙江大學(xué);2015年
2 黎成;基于隨機(jī)森林和ReliefF的致病SNP識(shí)別方法[D];西安電子科技大學(xué);2014年
3 羅燕;基于關(guān)聯(lián)規(guī)則的電壓暫降預(yù)測預(yù)警系統(tǒng)研究與實(shí)現(xiàn)[D];華北電力大學(xué);2014年
4 張啟飛;基于廣域測量系統(tǒng)的電力系統(tǒng)暫態(tài)穩(wěn)定預(yù)測[D];山西大學(xué);2013年
5 黃若寅;基于能量函數(shù)法的電力系統(tǒng)暫態(tài)穩(wěn)定在線識(shí)別及算法研究[D];華中科技大學(xué);2013年
6 遲麗寧;基于FP-Growth的分類規(guī)則挖掘算法及其應(yīng)用[D];青島大學(xué);2012年
7 杜浩;基于網(wǎng)格與并行技術(shù)的電力系統(tǒng)動(dòng)態(tài)安全評(píng)估[D];上海交通大學(xué);2011年
8 徐巖;特征裁剪技術(shù)研究及其在電力系統(tǒng)數(shù)據(jù)驅(qū)動(dòng)的暫態(tài)穩(wěn)定評(píng)估中的應(yīng)用[D];華南理工大學(xué);2011年
9 林琳;基于暫態(tài)能量函數(shù)法的電力系統(tǒng)安全性評(píng)估[D];華北電力大學(xué);2011年
10 章小強(qiáng);智能穩(wěn)定評(píng)估中的關(guān)鍵特征識(shí)別研究[D];華南理工大學(xué);2010年
,本文編號(hào):2337979
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/2337979.html