小型化寬帶功率檢測模塊設計與實現(xiàn)
[Abstract]:Microwave power measurement has important academic and commercial value in microwave communication, radar, environmental remote sensing and medical research. Modern microwave power measurement technology is developing towards miniaturization, modularization and broadband. In this paper, the development of microwave power measurement technology at home and abroad is analyzed, and the overall index and implementation scheme of miniaturized wideband power measurement module are established according to the requirements of wideband microwave power related projects. It consists of microwave power coupler, switch filter bank, microwave power detector and display and protection circuit. The strip line directional coupler is designed in ADS09 and IE3D by the method of passing measurement, so that the power measurement system can be embedded in the system to be monitored in real time. The frequency band of the coupler is 6 GHz ~ 18 GHz, the coupling degree is 20 鹵0.7 dB, the directivity is better than 16 dB, the insertion loss is less than 0.3 dB, the standing wave ratio is less than 1.2, and the size is smaller. Because the microwave signal is often mixed with harmonics in engineering application, the system uses the switch filter bank to realize the separation of fundamental wave and harmonic, which is the innovation of this measurement system. The microwave switch uses the high performance Agilent N1810UL electromechanical coaxial switch, the frequency is as high as 26.5 GHz, the insertion loss is less than 0.7 dB, the single pole double throw. The filter bank is composed of 6GHz / 10GHz / 10GHz / 10GHz two-channel bandpass filter with high Q value and low loss. The insertion loss of the two bandpass filters is less than 0.5 dB, the reflection is greater than 15 dB, the out-of-band suppression is larger than 40dB (partial 300MHz), and the performance is similar. The core part of microwave power detection system is microwave power detection module, which is also the focus of this paper. A Schottky diode detector based on SMS7630-061 is designed by adopting the circuit model of diode front-end wideband matching and back-end low-pass filtering. S parameters are used to simulate its reflection and insertion loss, and harmonic balance simulation is used to get the input power output voltage curve. The fabricated geophone is in the 6GHz~18GHz band, and the power range is-35dBm to 10 d Bm.. As the back-end signal processing part, the display and protection circuit module needs to convert the analog signal of the detection module into digital signal, and then get the corresponding power value by arithmetic mean filter, look-up table and piecewise linear interpolation algorithm. The ADC module of this system uses 24 bits ADS1220, to sample the precision high; the core controller is the ARM series STM32F103VCT6, integration function is rich; the input and output realizes the man-machine interaction under different situations through USART and LCD touch screen. In addition, when the comparator detects that the power exceeds a certain threshold, the MOSFET switch circuit will be controlled and the signal or power supply will be cut off to protect the key components in the microwave system. Finally, the mismatch error and temperature error in the measurement system are analyzed, and the corresponding error correction method is proposed. Finally, the design of miniaturized wideband power detection module is completed. The system has small size (about 250mm*75mm*55mm), flexible connection form and low cost. It can detect the power (average power) of 6GHz~18GHz wideband microwave signal in real time and accurately, and realize the separate measurement of fundamental power and harmonic power. The measuring error of-15dBm~30d Bm, is less than 鹵0.4dB. it has the characteristics of miniaturization, digitalization, accuracy and reproducibility, and has the function of power overload alarm and automatic protection to microwave circuit system.
【學位授予單位】:電子科技大學
【學位級別】:碩士
【學位授予年份】:2016
【分類號】:TM933.3
【相似文獻】
相關期刊論文 前10條
1 張貴軍;8540系列多功能數(shù)字通用功率計[J];國外電子測量技術;1994年04期
2 于靖,李英娜;電校準激光中功率計的設計和量值穩(wěn)定性考察[J];現(xiàn)代計量測試;1996年05期
3 唐軍;新一代功率計[J];電信快報;1998年12期
4 ;利用取樣功率計確定射頻和微波裝置的特性[J];電子測量技術;2001年04期
5 謝洪森;一種便攜式智能中波功率計[J];電工技術雜志;2002年02期
6 Ken Yang;;精度為±1%的功率計設計[J];電子設計技術;2002年12期
7 ;±1%精度的功率計[J];電子設計應用;2003年04期
8 張池軍;王厚軍;曹佩韋;戴志堅;;一類納瓦功率計的計量方法研究[J];儀器儀表學報;2007年04期
9 張玉亮;陶汝華;董偉偉;鄧贊紅;李達;王濤;趙義平;孟鋼;周曙;王金梅;邵景珍;方曉東;;新型薄膜材料在激光能量/功率計應用中的新進展[J];激光雜志;2009年04期
10 ;泰克推出緊湊型射頻、微波功率傳感器/功率計[J];電子測量與儀器學報;2011年12期
相關會議論文 前10條
1 劉憶椿;;量熱式功率計中量熱體的直流微波替代實驗[A];1989年全國微波會議論文集(上)[C];1989年
2 劉憶椿;;新型高靈敏度,寬頻帶,寬量程范圍的毫米波量熱式功率計[A];1987年全國微波會議論文集(中)[C];1987年
3 張旭光;;波導熱偶功率計的原理與設計[A];1985年全國微波會議論文集[C];1985年
4 楊德順;胡小培;;應用三端口反射計校準功率計[A];1991年全國微波會議論文集(卷Ⅱ)[C];1991年
5 趙愛英;;一種8mm功率探頭的設計[A];2011年全國微波毫米波會議論文集(下冊)[C];2011年
6 虞惠龍;胡海鷹;;大功率微波脈沖功率測量[A];中國工程物理研究院科技年報(1998)[C];1998年
7 高業(yè)勝;陳坤峰;全治科;;光纖功率計測量標準及其測量不確定度評定[A];第十一屆全國光學測試學術討論會論文(摘要集)[C];2006年
8 陳光遠;汪顯堯;;國內(nèi)外功率計及功率傳感器技術水平及發(fā)展動態(tài)[A];1993年全國微波會議論文集(下冊)[C];1993年
9 張曉冰;于革;;電網(wǎng)功率潮流分析及功率計量新方法研究[A];2010電工測試技術學術交流會論文集[C];2010年
10 高業(yè)勝;陳坤峰;全治科;;低溫輻射計用于光纖功率量值溯源方法研究[A];第十二屆全國光學測試學術討論會論文(摘要集)[C];2008年
相關重要報紙文章 前1條
1 山東 張秀峰 齊占元;用場強儀巧修發(fā)射機[N];電子報;2001年
相關碩士學位論文 前10條
1 夏賢青;小型化寬帶功率檢測模塊設計與實現(xiàn)[D];電子科技大學;2016年
2 趙鵬舉;大功率無源調(diào)配器的研制[D];電子科技大學;2016年
3 李新建;脈沖峰值與連續(xù)波中功率計自動校準系統(tǒng)的研制[D];南京理工大學;2008年
4 莫旭清;百瓦級激光功率的測量方法研究[D];湖北工業(yè)大學;2015年
5 張海闊;計量級毫米波功率計的研制[D];北京交通大學;2015年
6 張雨燕;微結(jié)構(gòu)熱電偶波功率計設計與制造[D];中國科學院電子學研究所;2000年
7 郝懷慶;三波長可見光功率計的技術研究[D];長春理工大學;2011年
8 翟杰;國家寬帶功率基準傳遞系統(tǒng)的研究[D];北京交通大學;2008年
9 胡革;中頻功率在線監(jiān)測研究與實現(xiàn)[D];電子科技大學;2006年
10 榮攀;基于TD-SCDMA&GSM綜測儀的終端快速功率校準的研究與實現(xiàn)[D];中國地質(zhì)大學(北京);2013年
,本文編號:2337419
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/2337419.html