電鐵牽引負(fù)荷擾動(dòng)電流概率分布模型研究
[Abstract]:The traction load of electrified railway is an important single-phase load in the power system, at the same time, it is also one of the main harmonic sources in the power system. With the continuous improvement of the power quality monitoring system, It is of great significance to study the probability distribution model of electric traction load disturbance current based on the measured data. Based on the distribution histogram of measured data, the probability distribution of traction load is solved by curve fitting method. The method proposed in this paper can be used to solve the probability distribution of different measurement data such as voltage and current. Aiming at the problem that the maximum entropy method may lead to poor fitting effect due to falling into local optimum, an improved maximum entropy method based on the distribution characteristics of measured data is proposed, which makes the probability distribution more in line with the actual distribution characteristics. In view of the problem that cloud transformation method may not converge, a cloud transformation method considering negative number interval fitting is put forward. The cloud transformation method is used to fit the negative part, which reduces the requirement of cloud transform method to parameters and improves the convergence of the algorithm. Finally, according to the high accuracy of cloud transformation method and the simple probability density equation of maximum entropy method, a cloud entropy method is proposed to solve the probability distribution by combining the maximum entropy method and cloud transformation method. This method has the high accuracy of cloud transformation method. The probability density function is simple. In this paper, the fitting effect of the above methods is evaluated by fitting error parameters, and the correctness of the proposed method is verified by different data. In this paper, the probability density function obtained by cloud entropy method is used to form the test database of measured data, which overcomes the problems of large amount of measured data occupying large space and inconvenient use. Based on the information of train running schedule of traction station, a method of predicting harmonics in new or unmonitored traction station is proposed. The prediction database is obtained by cloud entropy method as a supplement to the test database. Based on the ETAP simulation model of a regional power network, the probability distribution model established by cloud entropy method is used to obtain the load level under a certain probability of traction load as simulation parameter, and the influence of traction load on the power quality of regional power network is analyzed. The possible power quality problems are pointed out and the corresponding treatment suggestions are given.
【學(xué)位授予單位】:華北電力大學(xué)(北京)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TM711;TM74
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 湯波;馬世偉;林順富;魯月喬;葉建榮;陳光;;基于云理論的居民負(fù)荷集體諧波概率分布[J];電力系統(tǒng)自動(dòng)化;2016年03期
2 關(guān)欣;孫貴東;衣曉;郭強(qiáng);;累積量測(cè)序列的區(qū)間云變換及識(shí)別[J];控制與決策;2015年08期
3 賴雄鳴;王成;張勇;言蘭;緱錦;;最大熵法在可靠度計(jì)算中的應(yīng)用[J];計(jì)算力學(xué)學(xué)報(bào);2015年01期
4 張杰;何多昌;張志學(xué);;車網(wǎng)諧振機(jī)理分析及仿真研究[J];大功率變流技術(shù);2014年06期
5 韓旭東;王斌;高仕斌;陳民武;;基于車網(wǎng)耦合的高速鐵路AT供電系統(tǒng)諧振特性[J];西南交通大學(xué)學(xué)報(bào);2014年04期
6 周nv;孫超;廖瑞金;李劍;張鎰議;王時(shí)征;;基于云理論的變壓器多重故障診斷及短期預(yù)測(cè)方法[J];高電壓技術(shù);2014年05期
7 張樹蘭;曹娜;于群;;電鐵牽引供電系統(tǒng)的諧波仿真模型分析[J];電氣傳動(dòng)自動(dòng)化;2014年01期
8 李宏科;栗曉政;;高速電氣化鐵路供電系統(tǒng)電能質(zhì)量仿真研究[J];電氣時(shí)代;2014年01期
9 姜咪慧;王小君;婁競(jìng);和敬涵;Tony Yip;;牽引站饋線諧波電流的分析與預(yù)測(cè)[J];電網(wǎng)技術(shù);2014年01期
10 韓旭東;高仕斌;王斌;;牽引供電方案設(shè)計(jì)中諧波諧振問題研究[J];電力系統(tǒng)保護(hù)與控制;2013年15期
相關(guān)博士學(xué)位論文 前3條
1 許志偉;基于新型平衡變壓器與感應(yīng)濾波技術(shù)的電氣化鐵道電能質(zhì)量治理研究[D];湖南大學(xué);2014年
2 劉琦;基于云模型理論的模擬電路故障分類診斷的研究[D];河北工業(yè)大學(xué);2013年
3 張麗艷;新建電氣化鐵路對(duì)電網(wǎng)電能質(zhì)量影響的預(yù)測(cè)與對(duì)策分析研究[D];西南交通大學(xué);2012年
相關(guān)碩士學(xué)位論文 前10條
1 李沖;電氣化鐵道電能質(zhì)量的仿真與改善措施研究[D];華東交通大學(xué);2014年
2 邱倩;電氣化鐵路牽引負(fù)荷電能質(zhì)量評(píng)估方法[D];華北電力大學(xué);2014年
3 劉瑩;電氣化鐵路接入對(duì)電網(wǎng)電能質(zhì)量的影響評(píng)估及治理研究[D];山東大學(xué);2014年
4 姜咪慧;牽引負(fù)荷對(duì)地區(qū)電網(wǎng)電能質(zhì)量的影響研究[D];北京交通大學(xué);2014年
5 李坤鵬;電氣化鐵路功率調(diào)節(jié)器的研究[D];哈爾濱工業(yè)大學(xué);2013年
6 陳辰杰;牽引變電所綜合補(bǔ)償?shù)难芯縖D];華東交通大學(xué);2013年
7 張鳳全;基于混合濾波器的電氣化鐵道電能質(zhì)量綜合治理研究[D];華東交通大學(xué);2013年
8 黃德華;諧波潮流及概率諧波潮流研究[D];華南理工大學(xué);2013年
9 王紫鈺;電氣化鐵路牽引負(fù)荷電能質(zhì)量評(píng)估[D];華北電力大學(xué);2013年
10 唐開林;新建電氣化鐵路電能質(zhì)量影響預(yù)測(cè)研究[D];西南交通大學(xué);2012年
,本文編號(hào):2336413
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/2336413.html