天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 電氣論文 >

沙塵在太陽能光伏組件表面的沉降與沖蝕行為研究

發(fā)布時間:2018-11-15 12:16
【摘要】:隨著社會經(jīng)濟的不斷發(fā)展,對能源的需求不斷增加,能源的大量消耗直接導(dǎo)致了近年全國范圍內(nèi)形勢越來越嚴(yán)峻的空氣污染問題。太陽能是一種清潔、無害且發(fā)展?jié)摿薮蟮目稍偕茉?受到社會各界的青睞。我國太陽能資源較好的地區(qū)為西北地區(qū),非常有利于太陽能資源的大規(guī)模開發(fā)利用,但該地區(qū)沙漠化和荒漠化較為嚴(yán)重,多風(fēng)多沙的氣候特點使得風(fēng)中攜帶的沙粒會在太陽能光伏組件表面產(chǎn)生沉降、沖蝕等行為。利用Fluent中混合模型與DPM模型分別模擬沙塵在光伏組件表面的沉降和沖蝕行為。具體研究內(nèi)容和結(jié)果如下:(1)分析沙塵體積分?jǐn)?shù)對光伏組件表面沙塵沉降分布的影響。結(jié)果表明:不同入口體積分?jǐn)?shù)時組件表面沙塵的沉降分布是相同的,只是各部分的體積分?jǐn)?shù)不同;最大沉降區(qū)的體積分?jǐn)?shù)均為入口體積分?jǐn)?shù)的1.14倍。(2)分析來流風(fēng)速和太陽能光伏組件的安裝傾角對光伏組件表面沙塵沉降及沖蝕率分布的影響。結(jié)果表明:隨風(fēng)速的增加,組件表面沙塵的沉降分層逐漸明顯,最大沖蝕率增大;隨安裝傾角的增加,沙塵在組件表面的沉降更加均勻,最大沖蝕率減小。(3)分析沙塵粒徑對光伏組件表面沙塵沉降及沖蝕率分布的影響。結(jié)果表明:當(dāng)光伏組件安裝傾角小于45°時,隨沙塵粒徑的增加,沉降更加均勻;傾角大于45°時,隨沙塵粒徑的增加,沙塵沉降呈現(xiàn)出分散集中的特點;旌狭降某两捣植贾饕闪捷^大的顆粒相決定。隨沙塵粒徑的增加,最大沖蝕率的變化不大,說明粒徑不是影響沖蝕率的主要因素。(4)計算組件表面沙塵的沉降量及最大沉降密度。結(jié)果表明:隨光伏組件安裝傾角的增加,沉降量增加;傾角不變時,隨風(fēng)速的增加,沉降量有所減少;最大沉降密度隨風(fēng)速的增加而增大,當(dāng)安裝傾角為45°時,其最大沉降密度達(dá)到最大。(5)分析風(fēng)向角對光伏組件表面的沖蝕率分布。結(jié)果表明:隨風(fēng)向角的增加,組件表面的沖蝕率呈增大的趨勢,在風(fēng)向角為75°時達(dá)到最大值。(6)分析沙粒質(zhì)量流量對光伏組件表面沖蝕率分布的影響。結(jié)果表明:隨質(zhì)量流量的增加,最大沖蝕率先增大后波動變化,在質(zhì)量流量為0.35kg/s時達(dá)到最大值。
[Abstract]:With the development of social economy, the demand for energy is increasing, and the large amount of energy consumption has directly led to the more and more serious air pollution problem in the whole country in recent years. Solar energy is a clean, harmless and potential renewable energy, which is favored by all walks of life. The region with better solar energy resources in China is the northwest region, which is very conducive to the large-scale development and utilization of solar energy resources, but desertification and desertification are more serious in this area. Due to the characteristics of windy and sandy climate, the sand particles carried in the wind will cause sedimentation and erosion on the surface of solar photovoltaic module. The mixed model and DPM model in Fluent are used to simulate the sedimentation and erosion behavior of sand dust on the surface of photovoltaic module. The main contents and results are as follows: (1) the influence of dust volume fraction on the sand deposition distribution on the surface of photovoltaic module is analyzed. The results show that the settlement distribution of sand dust on the surface of the assembly is the same with different inlet volume fraction, but the volume fraction of each part is different. The volume fraction of the maximum settlement area is 1.14 times of that of the inlet volume fraction. (2) the effects of the wind speed of the incoming flow and the installation inclination of the solar photovoltaic module on the sand deposition and erosion rate distribution on the surface of the photovoltaic module are analyzed. The results show that with the increase of wind speed, the sedimentation and stratification of sand dust on the surface of the module become obvious, and the maximum erosion rate increases. With the increase of installation inclination, the sand settling on the module surface is more uniform, and the maximum erosion rate is reduced. (3) the influence of sand particle size on the sand deposition and erosion rate distribution on the surface of photovoltaic module is analyzed. The results show that when the installation angle of photovoltaic module is less than 45 擄, the sedimentation becomes more uniform with the increase of dust particle size, and when the inclination angle is greater than 45 擄, the sedimentation of sand dust presents the characteristics of dispersion and concentration. The settlement distribution of the mixed particle size is mainly determined by the larger particle size phase. With the increase of sand particle size, the maximum erosion rate does not change much, which indicates that the particle size is not the main factor affecting the erosion rate. (4) the sedimentation amount and maximum sedimentation density of sand dust on the surface of the module are calculated. The results show that the settlement increases with the increase of the installation inclination of the photovoltaic module, and decreases with the increase of the wind speed when the inclination angle is constant. The maximum settlement density increases with the increase of wind speed. When the installation angle is 45 擄, the maximum settlement density reaches the maximum. (5) the erosion rate distribution of wind direction angle on the surface of photovoltaic module is analyzed. The results show that the surface erosion rate increases with the increase of wind direction angle, and reaches the maximum value when wind direction angle is 75 擄. (6) the influence of sand mass flow on the surface erosion rate distribution of photovoltaic module is analyzed. The results show that the maximum erosion increases first and then fluctuates with the increase of mass flow rate, and reaches the maximum when the mass flow rate is 0.35kg/s.
【學(xué)位授予單位】:內(nèi)蒙古工業(yè)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TM914.4

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 王宇;陳偉雄;于飛;劉明;嚴(yán)俊杰;;氣固兩相流外掠H型翅片管磨損特性數(shù)值模擬[J];工程熱物理學(xué)報;2017年01期

2 黃思;鄒文朗;周錦駒;何東萍;彭天陽;;基于DPM模型的離心泵非定常固液兩相流及磨損計算[J];中國農(nóng)村水利水電;2016年07期

3 張儷安;錢付平;胡笳;夏勇軍;楊洪;魯進(jìn)利;韓云龍;;通風(fēng)管路90°彎管壁面顆粒磨損的數(shù)值模擬[J];過程工程學(xué)報;2016年03期

4 郭仁寧;趙立柱;馬冶;段樂樂;;氣固兩相流中90°豎直彎管肋條防磨性能的研究[J];熱能動力工程;2016年04期

5 黃思;鄒文朗;周錦駒;何東萍;彭天陽;;基于DPM模型的離心泵非定常固液兩相流及磨損計算(英文)[J];機床與液壓;2016年06期

6 宋曉琴;黃詩嵬;朱珊珊;;90°彎管氣固兩相流磨損研究[J];鉆采工藝;2015年06期

7 陳思;王尊策;呂鳳霞;何金鋼;;基于離散相模型的電潛泵葉輪磨損數(shù)值計算[J];中國石油大學(xué)學(xué)報(自然科學(xué)版);2015年03期

8 何興建;李翔;李軍;;T型彎頭不同工況的沖蝕磨損數(shù)值模擬研究[J];化工設(shè)備與管道;2015年03期

9 何興建;李翔;李軍;;不同工況下異徑管沖蝕磨損數(shù)值模擬研究[J];石油化工設(shè)備技術(shù);2015年03期

10 于飛;劉明;王汀;楊雪蓮;嚴(yán)俊杰;;彎頭內(nèi)氣-固兩相流動與管壁磨損特性研究[J];工程熱物理學(xué)報;2015年04期

相關(guān)會議論文 前2條

1 王濤;;近50年來中國北方典型地區(qū)沙漠化的發(fā)展與逆轉(zhuǎn)態(tài)勢[A];中國首屆沙產(chǎn)業(yè)高峰論壇文集[C];2008年

2 孫曉穎;許偉;武岳;;鈍體繞流中的計算域設(shè)置研究[A];第十三屆全國結(jié)構(gòu)風(fēng)工程學(xué)術(shù)會議論文集(下冊)[C];2007年

相關(guān)碩士學(xué)位論文 前10條

1 李亞楠;太陽能光伏組件風(fēng)載及周圍沙塵沉降模擬研究[D];內(nèi)蒙古工業(yè)大學(xué);2016年

2 徐通;基于FLUENT的活動板房室內(nèi)沙塵濃度分布規(guī)律數(shù)值模擬[D];蘭州大學(xué);2016年

3 王成澤;風(fēng)沙環(huán)境下風(fēng)力機葉片的沖蝕磨損特性研究[D];蘭州理工大學(xué);2016年

4 馬光飛;閘板位置對閘閥內(nèi)部氣固兩相流及磨損的影響[D];浙江理工大學(xué);2016年

5 康師源;風(fēng)機葉片沖蝕磨損數(shù)值模擬研究[D];新疆大學(xué);2015年

6 孟廣雙;荒漠光伏太陽能電池板表面灰塵作用機理及其清潔方法研究[D];青海大學(xué);2015年

7 王淼;管道內(nèi)液固兩相流磨蝕CFD研究[D];東北石油大學(xué);2014年

8 李凱杰;氣固兩相流下風(fēng)力機塔筒的沖蝕磨損行為研究[D];新疆大學(xué);2014年

9 石龍;風(fēng)沙流對鐵路路堤的響應(yīng)規(guī)律及新型擋沙墻設(shè)計參數(shù)優(yōu)化模擬研究[D];蘭州交通大學(xué);2014年

10 董曉鋒;氣固兩相流下風(fēng)力發(fā)電機葉片材料沖刷磨損行為研究[D];新疆大學(xué);2013年



本文編號:2333276

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/2333276.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶018b6***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com