鋰硫電池正極材料的制備及結(jié)構(gòu)設(shè)計(jì)
[Abstract]:In recent years, with the aggravation of energy crisis and the rapid development of electronic electric equipment, the research of clean and sustainable energy has become a research hotspot. Because of its high theoretical specific capacity (1675 m Ah/g) and energy density (2600 Wh/kg), lithium-sulfur battery is recognized as one of the most promising energy storage systems. At the same time, lithium-sulfur batteries have the advantages of rich crustal content of simple sulfur resources, low cost and environmental friendliness. However, the electronic insulation of sulfur and its discharge product lithium sulphide, the intermediate product polysulfide produced during the discharge of sulfur, is easily dissolved in the electrolyte and migrated to the negative electrode. As a result, the "shuttle effect" and the volume expansion of the sulfur electrode in the charge / discharge cycle seriously affect the electrochemical performance of the lithium sulfur battery. In view of the above problems, this paper mainly adopts the method of compounding simple sulfur and carbon to improve, the main experiment has the following three aspects: 1. A kind of porous carbon modified by SiO_2 was prepared by simple calcination and activation of potassium hydroxide with biomass waste rice husk as raw material. Carbon and sulfur composites were prepared by melt impregnation and their properties as cathode materials for lithium sulfur batteries were characterized. The porous carbon containing SiO_2 adsorbate has both microporous sulfur fixation and chemisorption double sulfur fixation, showing excellent electrochemical performance. 2. Nanoscale microporous carbon was prepared from biomass waste corncob by simple calcination and potassium hydroxide activation system. Carbon and sulfur composites were prepared by melt impregnation and their properties as cathode materials for lithium-sulfur batteries were characterized. The nanoscale corncob micropore carbon can increase the electron conductivity, shorten the ion transport path, and increase the contact area between the material and the electrolyte. In the presence of suitable binder sodium alginate, it showed excellent cycling stability and rate performance. 3. A series of oxygen rich carbon materials with adjustable specific surface area, pore volume and porosity were prepared by simple activation of alginate, a cheap and easily available natural polymer material. The relationship between electrical properties and carbon materials with different physical structures is also discussed. When the carbon material has a suitable pore volume and pore structure distribution, it can accommodate the active materials and thus obtain excellent electrochemical cycling performance and rate performance. These studies on the relationship between the microstructure, surface chemistry and electrochemical properties of the materials can be used to guide the reasonable design of carbon matrix materials in the future. 4. Using polyacrylonitrile (pan) as raw material, a nitrogen-doped carbon fiber film was prepared by batch electrospinning technique. The carbon fiber film can be used as the positive collector of lithium-sulfur battery, and the integrated positive electrode with high energy density without conductive agent can be obtained when the carbon fiber film is combined with sulfur. The excellent electrochemical performance is attributed to the adjustable porosity of the electrode and the chemically bonded polysulfide due to the doping of hetero atoms.
【學(xué)位授予單位】:河南師范大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TM912
【相似文獻(xiàn)】
相關(guān)博士學(xué)位論文 前7條
1 馬全新;鋰離子電池富鋰錳基正極材料與電極制備及改性研究[D];哈爾濱工業(yè)大學(xué);2017年
2 冀轉(zhuǎn);過渡金屬六氰配合物作為二次電池正極材料的應(yīng)用研究[D];中國地質(zhì)大學(xué);2017年
3 王星博;鋰離子電池富鋰正極材料的結(jié)構(gòu)表征與電化學(xué)性能研究[D];中國科學(xué)技術(shù)大學(xué);2017年
4 屠芳芳;碳基復(fù)合催化劑的制備及其在鋰氧電池中的應(yīng)用研究[D];浙江大學(xué);2017年
5 馮飛;用于寒地的電動(dòng)汽車鋰電池荷電狀態(tài)估計(jì)及均衡策略研究[D];哈爾濱工業(yè)大學(xué);2017年
6 高鵬;鋰離子電池富鋰三元正極材料Li_(1+x)(NiCoMn)_yO_2的合成與性能研究[D];哈爾濱工業(yè)大學(xué);2016年
7 閔秀娟;磷酸釩鋰基正極材料的結(jié)構(gòu)與循環(huán)穩(wěn)定性研究[D];哈爾濱工業(yè)大學(xué);2017年
相關(guān)碩士學(xué)位論文 前10條
1 史夢(mèng)姣;鋰硫電池正極材料的制備及結(jié)構(gòu)設(shè)計(jì)[D];河南師范大學(xué);2017年
2 孫宇;鋰硫電池正極硫/碳微球復(fù)合材料的制備及改性研究[D];東北師范大學(xué);2017年
3 胡寬;基于金屬摻雜多孔碳/硫正極材料的制備及鋰硫電池性能研究[D];合肥工業(yè)大學(xué);2017年
4 楊濤;硫化鋰正極材料的制備及電化學(xué)性能[D];浙江大學(xué);2017年
5 解二娟;鋰離子電池LiNi_xCo_yMn_zO_2正極材料的成分、合成工藝和納米銅摻雜研究[D];廣西大學(xué);2017年
6 羅垂意;無鈷鎳基正極材料理論計(jì)算與實(shí)驗(yàn)改性研究[D];江西理工大學(xué);2017年
7 徐蓮花;磷酸釩鋰正極材料的制備及其性能研究[D];安徽工業(yè)大學(xué);2017年
8 歐陽爵;氮氧雙摻雜介孔碳材料用作鋰空氣電池正極催化劑的研究[D];哈爾濱工業(yè)大學(xué);2017年
9 荊有澤;新型鋰/二氧化錳電池復(fù)合正極研究[D];天津大學(xué);2016年
10 王曉艷;釩酸鈉與鐵氰化鐵鈉離子電池正極材料的合成及性能研究[D];合肥工業(yè)大學(xué);2017年
,本文編號(hào):2333058
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/2333058.html