基于群智能的永磁同步電機(jī)故障診斷
[Abstract]:Automation and intelligence are the development trend of industrial system, and the stability of system is the premise of automation and intelligent realization. Permanent magnet synchronous motor (Permanent Magnet Synchronous Motor,PMSM) has high efficiency, high power density and strong robustness at the same time. Modern industry has been inseparable from the application of PMSM, especially in the field of precision control. When the motor fails to find and deal with the fault in time, the light motor itself will be damaged, and the heavy motor equipment will be damaged. Therefore, the study of PMSM fault diagnosis is very necessary and has great significance. The most common faults in PMSM are open circuit fault of drive system and short circuit fault of stator turn. In this paper, the open circuit of PMSM drive system and the fault diagnosis of PMSM stator inter-turn short circuit are studied by using swarm intelligence optimization algorithm. Firstly, on the basis of vector control, the mathematical model and dq axis mathematical model under PMSM static coordinate are established, and the vector transformation principle of motor is introduced. Then the mathematical models of PMSM drive system under open circuit and stator interturn short circuit are analyzed respectively. Then an improved extreme learning machine (Improved Extreme Learning Machine,IELM) algorithm based on adaptive second-order particle swarm optimization (Self-adaptive SECond-order Particle Swarm Optimization,SASECPSO) is proposed for the open circuit fault of PMSM drive system. The SASECPSO algorithm adopts adaptive inertial weight strategy and linear varying cognitive coefficient method to improve the convergence speed and accuracy of the second-order particle swarm optimization (SECond-order Particle Swarm Optimization,SECPSO) algorithm. In addition, using SASECPSO algorithm to optimize the input weights of LLM and threshold parameters of hidden layer at the same time, the recognition rate of LLM algorithm in PMSM fault can be improved. The speed of motor and the phase current of ABC are used as multi-source sample data. Many experiments show that the IELM algorithm has higher diagnostic accuracy than other algorithms. Finally, for the common inter-turn short circuit faults in PMSM, the eigenvector is extracted by energy spectrum analysis, and the penalty factor and kernel function parameters of SVM are optimized by adaptive dynamic cat swarm algorithm (ADAptive dynamic Cat Swarm Optimization,ADACSO). Then the optimized SVM is used in motor fault diagnosis. Using the eigenvector obtained from wavelet energy spectrum as the sample data of SVM algorithm, the simulation results show that, compared with other optimization algorithms, Using ADACSO to optimize SVM parameters can make SVM have higher diagnostic accuracy and accuracy in PMSM fault diagnosis.
【學(xué)位授予單位】:江南大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TP18;TM341
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 朱群;尹忠剛;張延慶;鐘彥儒;;基于粒子群優(yōu)化算法的永磁同步電機(jī)H_∞速度觀測器[J];西安理工大學(xué)學(xué)報(bào);2016年02期
2 陸慧娟;魏莎莎;宋夫華;高波涌;;一種Fibonacci優(yōu)化理論的改進(jìn)ELM分類方法[J];小型微型計(jì)算機(jī)系統(tǒng);2015年12期
3 肖漢;付俊芳;蔡大泉;周建中;肖劍;付文龍;;基于群智能加權(quán)核聚類的水電機(jī)組故障診斷[J];振動(dòng).測試與診斷;2015年04期
4 賀彥林;王曉;朱群雄;;基于主成分分析-改進(jìn)的極限學(xué)習(xí)機(jī)方法的精對苯二甲酸醋酸含量軟測量[J];控制理論與應(yīng)用;2015年01期
5 付文龍;周建中;李超順;肖漢;肖劍;朱文龍;;基于模糊K近鄰支持向量數(shù)據(jù)描述的水電機(jī)組振動(dòng)故障診斷研究[J];中國電機(jī)工程學(xué)報(bào);2014年32期
6 史麗萍;王攀攀;胡泳軍;韓麗;;基于骨干微粒群算法和支持向量機(jī)的電機(jī)轉(zhuǎn)子斷條故障診斷[J];電工技術(shù)學(xué)報(bào);2014年01期
7 尹剛;張英堂;李志寧;任國全;孫宜權(quán);;自適應(yīng)集成極限學(xué)習(xí)機(jī)在故障診斷中的應(yīng)用[J];振動(dòng).測試與診斷;2013年05期
8 吉哲;王修敏;張松濤;;基于BP神經(jīng)網(wǎng)絡(luò)的艦船電機(jī)故障診斷[J];電機(jī)與控制應(yīng)用;2013年07期
9 謝輔雯;;蟻群優(yōu)化BP神經(jīng)網(wǎng)絡(luò)的電機(jī)故障診斷設(shè)計(jì)與實(shí)現(xiàn)[J];制造業(yè)自動(dòng)化;2012年10期
10 李彬;李貽斌;;基于ELM學(xué)習(xí)算法的混沌時(shí)間序列預(yù)測[J];天津大學(xué)學(xué)報(bào);2011年08期
相關(guān)博士學(xué)位論文 前2條
1 馬超;基于元啟發(fā)優(yōu)化極限學(xué)習(xí)機(jī)的分類算法及其應(yīng)用研究[D];吉林大學(xué);2014年
2 程軍;基于生物行為機(jī)制的粒子群算法改進(jìn)及應(yīng)用[D];華南理工大學(xué);2014年
相關(guān)碩士學(xué)位論文 前5條
1 侯雅曉;五相永磁同步電機(jī)系統(tǒng)故障診斷與容錯(cuò)控制技術(shù)研究[D];哈爾濱工業(yè)大學(xué);2016年
2 杜博超;電動(dòng)汽車用永磁同步電機(jī)的故障診斷[D];哈爾濱工業(yè)大學(xué);2011年
3 王胤龍;稀土永磁電機(jī)振動(dòng)故障診斷系統(tǒng)研究[D];沈陽工業(yè)大學(xué);2008年
4 薛麗英;六相永磁同步電機(jī)驅(qū)動(dòng)系統(tǒng)故障診斷與容錯(cuò)的研究[D];西北工業(yè)大學(xué);2006年
5 張敬南;永磁電動(dòng)機(jī)電力推進(jìn)系統(tǒng)故障診斷專家系統(tǒng)技術(shù)研究[D];哈爾濱工程大學(xué);2004年
,本文編號:2328142
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/2328142.html