超支化高選擇性質(zhì)子交換膜中多級(jí)自組裝質(zhì)子傳輸通道原位構(gòu)建及優(yōu)化研究
[Abstract]:The proton exchange membrane is widely used in electrochemical energy conversion devices, including proton exchange membrane fuel cells (including direct methanol fuel cells), SPE water electrolysis and oxygen-enriched liquid flow cells. The Nafion membrane is the most widely used proton exchange membrane due to its good proton conductivity, strong mechanical properties, oxidation resistance and thermal stability. However, the problem of selective permeability of the Nafion membrane has an influence on the large-scale application of the Nafion membrane in the direct methanol fuel cell and the oxygen-enriched liquid flow cell. the poor selectivity of the nafion membrane will result in severe methanol fuel penetration in the direct methanol fuel cell application. in the process of operation, the methanol molecule can easily penetrate the membrane to the cathode from the anode through the membrane due to the bad alcohol resistance of the Nafion membrane, not only the waste of the methanol fuel is caused, but also the oxygen reduction reaction of the cathode is seriously inhibited, resulting in a decrease in the operating voltage of the battery and the efficiency of the battery. Therefore, it can be said that the lack of a high-selectivity proton exchange membrane is a stumbling block to the development of direct methanol fuel cells. The new type of proton exchange membrane with good selectivity and low price is the key to the development of direct methanol fuel cell. Similarly, the selectivity of the Nafion membrane also affects the development process of the oxygen-enriched liquid flow cell. Although the Nafion membrane has excellent chemical stability, it becomes the main membrane in the application of the present oxygen-enriched liquid-flow battery. However, the high ionic permeability of the Nafion membrane is such that the voltage efficiency, coulombic efficiency and energy efficiency of the oxygen-oxygen flow cell assembled by the Nafion membrane are low. In general, the design and development of a highly selective proton exchange membrane is a major subject in the field of direct methanol fuel cells and oxygen-enriched liquid-flow cells. The highly ordered proton transfer channel is an important prerequisite for ensuring the efficient conduction of protons and improving the selectivity of the proton exchange membrane. Therefore, the construction of the high-selective proton transfer channel is the most important research topic in the direction of the proton exchange membrane. The self-assembly of the proton transfer channel in the proton exchange membrane is realized by adjusting the microstructure of the proton transfer function polymer, and the selectivity of the proton exchange membrane can be further improved by optimizing the microstructure of the multi-stage proton transfer channel in the proton exchange membrane. The specific content of the study is as follows: 1. The research confirms that the hyperbranched polyetheramine proton exchange membrane can effectively reduce the fuel penetration and improve the proton conductivity. the proton exchange membrane exhibits a resistance to alcohol that is at least 15 times higher than nafion 117. On this basis, a new concept _ multi-stage proton transfer channel (HPCCs) is proposed for the first time. In these HPCCs, the proton transfer channel consisting of the high-density sulfonic acid groups inside the hyperbranched polyetheramine molecule is referred to as a primary proton transfer channel (FOPCC). In addition, the formation of a rich hydrogen bond network between the functional groups of the hyperbranched polyylamine molecules and the activated water molecules is referred to as a secondary proton transfer channel (SOPCC). The highly effective proton transfer performance (0.282S/ cm, 80oC) is demonstrated by the synergistic effect of the primary and secondary proton transfer channels. the invention realizes the optimization of the multi-stage proton transfer channel by adjusting the nano-structure of the synthetic hyperbranched polyetheramine molecular monomer, thereby reducing the methanol permeability of the proton exchange membrane, and simultaneously improving the selectivity of the proton exchange membrane by more than 1. This paper further enhances the resistance of the membrane by adjusting the microstructure of the first-order proton transfer channel. A series of co-mixed membranes were prepared by casting two kinds of polymers with different mass ratios with the solution casting method. because the density of the sulfonic acid groups-SO3H in the two polyetheramine macromolecules is different, the regulation of the primary proton transfer channel in the proton exchange membrane can be realized by adjusting the proportion of the two molecules in the blending membrane, so as to realize the optimization of the proton exchange membrane resistance alcohol and the selection performance. In this paper, the micro-structure of the two-stage proton transfer channel in the multi-stage proton transfer channel is optimized, and the hydrogen bond strength and water-retaining property of the second-stage proton transfer channel are changed by a gentle method, thus the overall performance of the proton exchange membrane is optimized. First, the hyperbranched polyetheramine macromolecules with different functional groups (-COOH and-NH2) and similar in size are designed and synthesized, and the two polymer macromolecules are prepared into the composite membrane according to different proportions. the micro-structure of the two-stage proton transfer channel in the blending film is adjusted by adjusting the proportion of the two polyetheramine macromolecules, the selectivity of the proton exchange membrane is 1 to 7 times higher than that of the Nafion 117, the application field is extended from a direct methanol fuel cell to an oxygen-oxygen flow cell that is also highly selective to a very high selectivity. The dense structure of the multi-stage proton transfer channel in the hyperbranched polyetheramine effectively prevents the penetration of the oxygen ions. Compared with the Nafion 117 membrane, the hyperbranched polyetheramine proton exchange membrane exhibits good proton/ polar ion selectivity, a high of 14. 4-104S. s/ cm3, 3-fold higher than that of the Nafion 117 membrane, and 5, due to the good chemical stability of the polycarbodiimide, In this paper, a hyperbranched polycarbodiimide is designed and synthesized for the construction of high-selectivity multi-stage proton transfer channels. The mechanical properties of the polycarbodiimide proton exchange membrane were 25% higher than that of polyalicyclic amine. the methanol permeability through the blend membrane was so low that the instrument could not be detected with the instrument. To sum up, a high-selectivity proton exchange membrane is obtained by a macromolecular microstructure design to obtain a high-selectivity proton exchange membrane, and at the same time, the proton exchange membranes exhibit good mechanical properties. This paper provides a reference for the development and research of a new type of proton exchange membrane for direct methanol fuel cell and oxygen-oxygen flow cell.
【學(xué)位授予單位】:中國(guó)地質(zhì)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類號(hào)】:TM911.4
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 肖帶麗;;無(wú)氟質(zhì)子交換膜的研究和進(jìn)展[J];廣東化工;2010年07期
2 李瓊;李薇;張海寧;潘牧;;聚合物質(zhì)子溶劑在質(zhì)子交換膜中的應(yīng)用[J];電源技術(shù);2011年04期
3 張?jiān)鲇?;氟離子交換膜[J];杭州化工;1991年04期
4 孫紅;欒麗華;吳鐵軍;唐玉蘭;王遜;;質(zhì)子交換膜中的傳質(zhì)分析[J];工程熱物理學(xué)報(bào);2012年02期
5 艾明歡;李海濱;;超薄CsH_2PO_4/SiO_2復(fù)合質(zhì)子交換膜的制備[J];材料導(dǎo)報(bào);2012年04期
6 楊萌;相艷;王慕冰;康思聰;徐惠彬;;化學(xué)與生物改性合成質(zhì)子交換膜[J];化學(xué)進(jìn)展;2009年01期
7 吳魁;解東來(lái);;高溫質(zhì)子交換膜研究進(jìn)展[J];化工進(jìn)展;2012年10期
8 石倩茹;陶慷;章勤;薛立新;張堯劍;;離子液體在質(zhì)子交換膜中的應(yīng)用研究進(jìn)展[J];膜科學(xué)與技術(shù);2013年03期
9 羅居杰;宋艷慧;崔培培;謝小玲;;接枝磺酸基質(zhì)子交換膜的制備及性能研究[J];化工新型材料;2014年03期
10 王盎然;包永忠;翁志學(xué);黃志明;;丙烯腈-對(duì)苯乙烯磺酸共聚物質(zhì)子交換膜的合成與性能[J];高;瘜W(xué)工程學(xué)報(bào);2010年05期
相關(guān)會(huì)議論文 前10條
1 張燕梅;方軍;伍永彬;;用于堿性直接甲醇燃料電池的新型含氟陰離子交換膜的制備及表征[A];中國(guó)化學(xué)會(huì)第十一屆全國(guó)氟化學(xué)會(huì)議論文摘要集[C];2010年
2 徐維林;陸天虹;邢巍;;低甲醇透過(guò)質(zhì)子交換膜的研究[A];第十二屆中國(guó)固態(tài)離子學(xué)學(xué)術(shù)會(huì)議論文集[C];2004年
3 劉盛洲;張興鵬;印杰;;嵌段長(zhǎng)度對(duì)磺酸基嵌段共聚物質(zhì)子交換膜性能的影響研究[A];2006年全國(guó)高分子材料科學(xué)與工程研討會(huì)論文集[C];2006年
4 石守穩(wěn);陳旭;;浸泡質(zhì)子交換膜力學(xué)性能及其微觀變形機(jī)理的研究[A];中國(guó)力學(xué)大會(huì)——2013論文摘要集[C];2013年
5 馮慶霞;張冬芳;嚴(yán)六明;;納米復(fù)合H_3PO_4-BPO_4-ABPBI高溫質(zhì)子交換膜的制備與表征[A];中國(guó)化學(xué)會(huì)第27屆學(xué)術(shù)年會(huì)第10分會(huì)場(chǎng)摘要集[C];2010年
6 李林繁;于洋;鄧波;虞鳴;謝雷東;李景燁;陸曉峰;;輻射接枝法制備質(zhì)子交換膜的研究[A];中國(guó)核科學(xué)技術(shù)進(jìn)展報(bào)告——中國(guó)核學(xué)會(huì)2009年學(xué)術(shù)年會(huì)論文集(第一卷·第8冊(cè))[C];2009年
7 王博;王新東;王文紅;張紅飛;陳玲;;燃料電池質(zhì)子交換膜電導(dǎo)率的測(cè)試方法研究[A];冶金研究中心2005年“冶金工程科學(xué)論壇”論文集[C];2005年
8 薛松;尹鴿平;;磺化聚醚醚酮/磷鎢酸復(fù)合質(zhì)子交換膜[A];第十三次全國(guó)電化學(xué)會(huì)議論文摘要集(上集)[C];2005年
9 朱靖;邵柯;那輝;;基于靜電紡絲技術(shù)的納米纖維質(zhì)子交換膜材料[A];2009年全國(guó)高分子學(xué)術(shù)論文報(bào)告會(huì)論文摘要集(上冊(cè))[C];2009年
10 紀(jì)曉波;嚴(yán)六明;陸文聰;馬和平;;酸堿質(zhì)子交換膜中質(zhì)子動(dòng)力學(xué)行為及協(xié)同效應(yīng)[A];中國(guó)化學(xué)會(huì)第27屆學(xué)術(shù)年會(huì)第14分會(huì)場(chǎng)摘要集[C];2010年
相關(guān)重要報(bào)紙文章 前1條
1 本報(bào)記者 李香才;質(zhì)子交換膜燃料電池技術(shù)取得進(jìn)展[N];中國(guó)證券報(bào);2013年
相關(guān)博士學(xué)位論文 前10條
1 馬麗英;超支化高選擇性質(zhì)子交換膜中多級(jí)自組裝質(zhì)子傳輸通道原位構(gòu)建及優(yōu)化研究[D];中國(guó)地質(zhì)大學(xué);2017年
2 袁森;燃料電池用新型聚酰亞胺及聚硫醚砜基質(zhì)子交換膜的研究[D];上海交通大學(xué);2014年
3 劉鑫;燃料電池用磺酸化聚醚醚酮質(zhì)子交換膜的制備與改性研究[D];北京化工大學(xué);2015年
4 付鳳艷;聚磷腈類質(zhì)子交換膜的制備與表征[D];北京理工大學(xué);2015年
5 喬宗文;側(cè)鏈型磺化聚砜質(zhì)子交換膜的制備、微相分離結(jié)構(gòu)與性能的研究[D];中北大學(xué);2016年
6 吳斌;質(zhì)子交換膜微觀結(jié)構(gòu)調(diào)控研究[D];天津大學(xué);2015年
7 張杰;含POSS嵌段共聚物質(zhì)子交換膜的制備及性能研究[D];西北工業(yè)大學(xué);2016年
8 李云蹊;直接甲醇燃料電池填充型復(fù)合質(zhì)子交換膜的制備與性能研究[D];吉林大學(xué);2017年
9 王曉恩;復(fù)合質(zhì)子交換膜機(jī)械增強(qiáng)與溫濕度響應(yīng)特性[D];武漢理工大學(xué);2011年
10 鐘雙玲;直接甲醇燃料電池用新型質(zhì)子交換膜的制備與性能研究[D];吉林大學(xué);2008年
相關(guān)碩士學(xué)位論文 前10條
1 黃鑫;高溫質(zhì)子交換膜材料的制備和性能研究[D];合肥工業(yè)大學(xué);2017年
2 裴儒博;新型質(zhì)子導(dǎo)電功能性配位聚合物的制備、表征及性能研究[D];鄭州大學(xué);2017年
3 陳駿;金屬雙極板質(zhì)子交換膜燃料電池內(nèi)阻研究[D];武漢理工大學(xué);2014年
4 韓澍;含羧基磺化聚芳醚酮砜類質(zhì)子交換膜材料的制備與性能研究[D];長(zhǎng)春工業(yè)大學(xué);2015年
5 梁宇;交聯(lián)型直接甲醇燃料電池質(zhì)子交換膜的制備及性能研究[D];蘭州大學(xué);2015年
6 薛童;磺化嵌段聚醚砜質(zhì)子交換膜的制備與改性[D];南京理工大學(xué);2015年
7 袁祖鳳;磺化聚芳酸砜類側(cè)鏈型質(zhì)子交換膜的制備及改性[D];南京理工大學(xué);2015年
8 胡玉濤;咪唑摀化聚砜共混氫氧根交換膜的制備與性能[D];大連理工大學(xué);2015年
9 修鳳羽;半超支化半交聯(lián)磺化聚酰亞胺復(fù)合質(zhì)子交換膜制備及性能研究[D];大連理工大學(xué);2015年
10 孫成剛;直接甲醇燃料電池用高性能含硅無(wú)皂乳液的制備及性能研究[D];吉林農(nóng)業(yè)大學(xué);2015年
,本文編號(hào):2319469
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/2319469.html