天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 電氣論文 >

電能質(zhì)量復(fù)合擾動識別方法研究

發(fā)布時間:2018-11-07 09:57
【摘要】:近幾年,智能電網(wǎng)的研究成為電力系統(tǒng)的一個熱點問題,而保障優(yōu)質(zhì)的電能質(zhì)量是智能電網(wǎng)研究的重點問題。另一方面,大量電力電子設(shè)施的廣泛使用,新能源等技術(shù)的應(yīng)用,都需要高質(zhì)量的電能提供保障。所以,識別出電能質(zhì)量信號中的擾動信息不僅有利于檢測出優(yōu)劣的電能質(zhì)量,而且還能減少或者控制由電能質(zhì)量擾動產(chǎn)生的各種問題。在實際生活中出現(xiàn)的擾動并不只是單一的擾動,而是經(jīng)常出現(xiàn)幾種擾動共存的情況。因此,識別出擾動是保障優(yōu)質(zhì)的電能質(zhì)量的基礎(chǔ)。本課題重點是圍繞復(fù)合擾動的特征提取和分類識別兩部分展開探究。在特征提取方面,本文主要是應(yīng)用S變換和小波變換提取特征量。本文在探究復(fù)合擾動的提取特征時,用S變換對擾動作深入探究,提出一種提高時間和頻率分辨率的S算法,提取每種擾動的改進的S矩陣的每列最大幅值的最大值、每列最大幅值的最小值和工頻幅值的均值三個特征量作為一部分特征量;對擾動信號進行小波變換,提取擾動信號每層能量的差值作為另一部分,加上改進S變換提取的一部分特征量作為總的特征量。在分類方面,應(yīng)用支持向量機識別出不同的擾動。其中,高斯核函數(shù)是其辨識出擾動信號的關(guān)鍵因子。本文對高斯核函數(shù)進行改進,引入幅度調(diào)節(jié)參數(shù)和徑向?qū)挾日{(diào)節(jié)參數(shù),提高了電能質(zhì)量復(fù)合擾動的識別準(zhǔn)確率;對于分類器中的參數(shù)選擇難的問題,用粒子群進行參數(shù)尋優(yōu),并且深入研究粒子群,提出了指數(shù)型的慣性權(quán)重,快速準(zhǔn)確的求取參數(shù)的最優(yōu)組合,提高了擾動識別的準(zhǔn)確率。仿真結(jié)果顯示,利用小波算法和提高時頻分辨率的S算法獲取特性向量用到支持向量機中,得到的識別準(zhǔn)確率比小波變換和S變換提取的特征量進行識別的準(zhǔn)確率提高了3.7839%,比小波變換提取的特征量的識別準(zhǔn)確率提高了7.5758%;利用基于幅度調(diào)節(jié)和徑向?qū)挾日{(diào)節(jié)的高斯核函數(shù)算法,提高了支持向量機分類器的識別準(zhǔn)確率,降低了計算復(fù)雜度,使支持向量的個數(shù)變少,其整體識別準(zhǔn)確率比支持向量機的提高了1.8182%;利用指數(shù)型慣性權(quán)重的粒子群算法求取改進的支持向量機中的參數(shù)的最優(yōu)值,得到的識別準(zhǔn)確率比粒子群得到的結(jié)果提升了0.3788%。
[Abstract]:In recent years, the research of smart grid has become a hot issue in power system, and the guarantee of high quality power quality is the key issue in the research of smart grid. On the other hand, the widespread use of a large number of power electronic facilities and the application of new energy technologies require high quality electrical energy to provide protection. Therefore, identifying the disturbance information in the power quality signal is not only helpful to detect the power quality, but also can reduce or control all kinds of problems caused by the power quality disturbance. The disturbance in real life is not only a single disturbance, but also the coexistence of several disturbances. Therefore, the identification of disturbances is the basis for ensuring high quality power quality. This thesis focuses on feature extraction and classification recognition of complex disturbances. In feature extraction, this paper mainly uses S transform and wavelet transform to extract feature quantity. In this paper, an S algorithm is proposed to improve the resolution of time and frequency in order to extract the maximum of the maximum value in each column of the improved S-matrix of each disturbance. The minimum value of the maximum value of each column and the mean value of the power frequency amplitude are taken as part of the eigenvalues. Wavelet transform is applied to the disturbance signal, the difference of energy in each layer is extracted as the other part, and a part of the characteristic quantity extracted by the improved S transform is taken as the total characteristic quantity. In classification, support vector machines (SVM) are used to identify different disturbances. Among them, Gao Si kernel function is the key factor to identify disturbance signal. In this paper, Gao Si kernel function is improved, amplitude adjustment parameter and radial width adjustment parameter are introduced to improve the accuracy of power quality complex disturbance identification. For the problem of difficult parameter selection in classifier, the particle swarm optimization is used to optimize the parameters, and the particle swarm optimization is deeply studied. The inertial weight of exponential type is put forward, the optimal combination of parameters is obtained quickly and accurately, and the accuracy of disturbance identification is improved. The simulation results show that the wavelet algorithm and the S algorithm to improve the time-frequency resolution are used to obtain the characteristic vector in the support vector machine. The recognition accuracy is 3.7839 higher than that of wavelet transform and S-transform, and 7.5758% higher than that of wavelet transform. Using Gao Si kernel function algorithm based on amplitude adjustment and radial width adjustment, the recognition accuracy of support vector machine classifier is improved, the computational complexity is reduced, and the number of support vectors is reduced. The overall recognition accuracy is 1.8182 higher than that of support vector machine. The particle swarm optimization algorithm of exponential inertia weight is used to obtain the optimal value of the parameters in the improved support vector machine, and the recognition accuracy is improved by 0.3788 compared with the result obtained by the particle swarm optimization.
【學(xué)位授予單位】:東北電力大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TM76;TP18

【參考文獻】

相關(guān)期刊論文 前10條

1 趙立權(quán);龍艷;;基于改進的SVM的電能質(zhì)量復(fù)合擾動分類[J];電工電能新技術(shù);2016年10期

2 陳華豐;楊志剛;曾濤;;基于S變換和規(guī)則基的復(fù)合電能質(zhì)量擾動識別[J];電測與儀表;2015年12期

3 尹柏強;何怡剛;朱彥卿;;一種廣義S變換及模糊SOM網(wǎng)絡(luò)的電能質(zhì)量多擾動檢測和識別方法[J];中國電機工程學(xué)報;2015年04期

4 楊寧霞;孫fg;公政;高建成;;一種基于PSO-SVM的電能質(zhì)量擾動識別與分類的新方法[J];電測與儀表;2014年16期

5 郭俊文;李開成;;基于改進S變換和復(fù)合特征量的多級支持向量機的電能質(zhì)量擾動分類[J];電測與儀表;2014年08期

6 劉德建;焦琛鈞;鄭曉龍;;一種基于多特征量的復(fù)合電能質(zhì)量擾動自動識別方法[J];成都大學(xué)學(xué)報(自然科學(xué)版);2014年01期

7 江輝;劉順桂;尹遠(yuǎn)興;田啟東;彭建春;;基于小波和改進S變換的電能質(zhì)量擾動分類[J];深圳大學(xué)學(xué)報(理工版);2014年01期

8 趙立權(quán);謝妮娜;;基于小波變換和改進的RVM的電能質(zhì)量擾動分類[J];電工電能新技術(shù);2013年04期

9 張巧革;劉志剛;朱玲;張楊;;基于多標(biāo)簽Rank-WSVM的復(fù)合電能質(zhì)量擾動分類[J];中國電機工程學(xué)報;2013年28期

10 劉志剛;張巧革;張楊;;電能質(zhì)量復(fù)合擾動分類的研究進展[J];電力系統(tǒng)保護與控制;2013年13期

相關(guān)碩士學(xué)位論文 前2條

1 劉德建;復(fù)合電能質(zhì)量擾動信號識別方法研究[D];西南交通大學(xué);2014年

2 張楊;混合電能質(zhì)量擾動信號識別算法研究[D];西南交通大學(xué);2012年

,

本文編號:2316003

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/2316003.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶6be90***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com