基于分岔理論的電力系統(tǒng)電壓穩(wěn)定分析及控制策略研究
[Abstract]:With the development of industry and information technology in the 21st century and the continuous improvement of people's living standard, industrial production equipment, household appliances and other power supply quality are constantly put forward higher requirements, how to provide more security and stability, Reliable power supply has become the research direction of modern power system related technology. The quality of power system is measured by voltage, frequency and harmonics. As several voltage instability accidents in the world have seriously affected the production and life of the society and people at that time, in recent years, the voltage stability of the power system has attracted the attention of the society and the International Electrotechnical Institute. With the continuous progress of power industry, modern power system is increasingly developing towards the direction of large power grid, large units, UHV long-distance transmission, the use of various distributed power sources, new energy grid connection and reactive power compensation, etc. The operation conditions of power system are becoming more and more complex and the dynamic factors are increasing, which makes it more difficult to maintain the voltage stability of the power network. In this context, various uncertain factors and dynamic effects such as dynamic load, dynamic characteristics of reactive power compensator, dynamic characteristics of generator and electromagnetic power disturbance are considered in this paper. Two different power system models are improved respectively. Using the method of voltage stability bifurcation analysis and using time domain simulation and chaos theory as a supplement, the voltage instability process and mechanism of power system under various load conditions and voltage stability region are studied. The load margin and power transmission limit are analyzed. On this basis, two kinds of nonlinear voltage stability controllers are designed based on the finite time stability principle and the diagonal matrix asymptotic stability principle, respectively, and the effectiveness of the controller is verified by numerical simulation. Firstly, the traditional single-machine PQ dynamic load power system model is improved, considering the electromagnetic power disturbance, the system has two uncertain parameters and is supported by the static Var compensator (SVC). Taking reactive power compensation gain k _ (SVC) and reactive load QD as bifurcation parameters (i.e. uncertain parameters), the one-dimensional equilibrium solution manifold (voltage curve) and time-domain simulation diagram of the system are analyzed by bifurcation theory and chaos theory. The physical mechanism of the system from voltage instability to collapse is obtained. The voltage stability limit, reactive load margin and SVC gain adjustment margin are analyzed by using the two-dimensional bifurcation curve of the system. Finally, the controller is designed based on the finite time stability control principle, and the nonlinear voltage stability control of the system is realized. Secondly, considering that the system has three uncertain parameters, the single-parameter power system model with Walve dynamic load is rededuced, and the mathematical model with PSP _ 1Q _ S _ 1 and P _ S _ m as undetermined parameters is obtained. Using the voltage curve, phase locus, maximum LE spectrum and bifurcation diagram, the voltage stability characteristics and the operating state of the system under various loads are comprehensively analyzed. The voltage stability of the system is analyzed with two parameters and three parameters. The voltage stability boundary, power transmission limit and load dynamic characteristics of the system are obtained. Finally, a novel nonlinear voltage stability controller based on the diagonal matrix asymptotic stability principle is proposed. The Matlab simulation shows that the controller can effectively suppress the voltage instability in power system. The voltage stability of the system is improved and the system is robust.
【學位授予單位】:華北電力大學(北京)
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TM712
【參考文獻】
相關期刊論文 前10條
1 張明銳;梅杰;李元浩;歐陽麗;;基于切換仿射系統(tǒng)的風電電壓穩(wěn)定控制[J];電工技術學報;2016年03期
2 李曉明;黃大為;于娜;;發(fā)電機勵磁系統(tǒng)參數(shù)對系統(tǒng)動態(tài)電壓恢復的影響分析[J];廣東電力;2015年10期
3 張栩;劉雪茹;;勵磁放大倍數(shù)對系統(tǒng)電壓穩(wěn)定性的影響研究[J];電源技術;2015年06期
4 陳仕龍;謝佳偉;畢貴紅;張杰;張文英;高超;;一種特高壓直流輸電線路神經(jīng)網(wǎng)絡雙端故障測距新方法[J];電工技術學報;2015年04期
5 孫輝;李峻;胡姝博;周瑋;陳曉東;金曉明;劉淼;李春平;;基于動態(tài)潮流的非線性規(guī)劃法求解電壓穩(wěn)定裕度[J];電力系統(tǒng)保護與控制;2014年18期
6 王卓欣;李禹鵬;;電力系統(tǒng)電壓穩(wěn)定分析方法綜述[J];電力與能源;2014年03期
7 許曉菲;牟濤;賈琳;江長明;高洵;劉純;;大規(guī)模風電匯集系統(tǒng)靜態(tài)電壓穩(wěn)定實用判據(jù)與控制[J];電力系統(tǒng)自動化;2014年09期
8 閔富紅;馬美玲;翟煒;王恩榮;;基于繼電特性函數(shù)的互聯(lián)電力系統(tǒng)混沌控制[J];物理學報;2014年05期
9 熊橋坡;羅安;王曉;黎小聰;馬伏軍;肖華根;;鏈式靜止無功發(fā)生器直流側電壓穩(wěn)定性分析[J];電力系統(tǒng)自動化;2014年03期
10 李娟;薄明明;趙迎春;宋彬彬;劉志士;;動態(tài)連續(xù)潮流與自適應混沌粒子群結合計算靜態(tài)電壓穩(wěn)定裕度[J];電工電能新技術;2014年01期
相關博士學位論文 前2條
1 趙興勇;基于分岔理論的電力系統(tǒng)電壓穩(wěn)定性研究[D];上海交通大學;2008年
2 劉菲;非線性氣動彈性系統(tǒng)的分叉分析[D];西南交通大學;2007年
相關碩士學位論文 前10條
1 文一宇;基于外網(wǎng)等值的靜態(tài)電壓穩(wěn)定分析與廣域控制方法研究[D];重慶大學;2011年
2 殷宏濤;交直流互聯(lián)方式下山東電網(wǎng)電壓靜態(tài)穩(wěn)定性分析[D];山東大學;2011年
3 茍旭;基于分岔理論的電力系統(tǒng)電壓穩(wěn)定性研究[D];重慶大學;2010年
4 何亦蕊;基于精細積分法的電力系統(tǒng)動態(tài)電壓穩(wěn)定仿真研究[D];哈爾濱工業(yè)大學;2008年
5 劉夢欣;多機電力系統(tǒng)勵磁和廣義Hamilton實現(xiàn)控制方法與應用[D];上海交通大學;2008年
6 李險峰;時滯狀態(tài)反饋控制下的Duffing系統(tǒng)的分岔及混沌控制[D];蘭州交通大學;2007年
7 陳敏;基于最小奇異值靈敏度的靜態(tài)電壓穩(wěn)定分析與研究[D];華中科技大學;2007年
8 殷紅德;分岔理論在含F(xiàn)ACTS裝置電力系統(tǒng)電壓穩(wěn)定性分析中的應用研究[D];鄭州大學;2006年
9 張維莉;電力系統(tǒng)靜態(tài)電壓穩(wěn)定性分析與校正控制研究[D];河海大學;2006年
10 劉韶峰;分岔理論與AUTO97在電力系統(tǒng)電壓穩(wěn)定性分析中的應用研究[D];鄭州大學;2004年
,本文編號:2311206
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/2311206.html