電纜終端局部放電信號去噪方法研究
[Abstract]:Partial discharge detection is one of the most effective methods for fault diagnosis of electrical equipment and is widely used in cable accessory fault diagnosis. However, because of the background noise, especially the white noise, the sensitivity of PD on-line detection is greatly reduced. The frequency components of white noise are all over the frequency domain, and the waveform of time domain is all over the time domain, which makes the removal of white noise interference from partial discharge signal become a difficult and hot research topic in the denoising technology of partial discharge signal. Based on the above discussion, based on the partial discharge detection of cable terminal, two kinds of partial discharge signal denoising methods are proposed to remove white noise interference at high signal-to-noise ratio and low signal-to-noise ratio respectively. The main research contents are as follows: (1) the main causes of cable terminal failure are analyzed, and four typical defect models of cable terminal are designed and made as the test object of this paper to carry out partial discharge test. Four kinds of partial discharge signals with typical defects of cable terminals are collected as experimental verification of the denoising methods proposed in this paper. (2) A denoising method for partial discharge signals based on kurtosis and time domain energy is proposed. It is used to solve the problem of slow calculation speed and unclear pulse edge of existing partial discharge signal denoising methods under high SNR. Firstly, the location of partial discharge pulse is realized by calculating the kurtosis of local discharge signal, and then the position of peak value of partial discharge pulse in the whole data window is determined to reduce the computation amount of subsequent pulse extraction. Secondly, by analyzing the time domain energy difference between white noise and partial discharge pulse signal, the time domain energy threshold and the corresponding time window length are determined. Finally, using the time-domain energy search method to search the edge of the pulse on both sides, the detection and determination of the partial discharge pulse edge can be realized by taking the peak value of the pulse as the center. Then partial discharge pulse extraction is realized. (3) an adaptive sparse decomposition de-noising method for partial discharge signal is proposed, and a matching atom library corresponding to partial discharge signal is constructed. In order to improve the computational efficiency and denoising effect of MP algorithm in the process of partial discharge signal denoising. Based on the fast spectral kurtosis and S-transform, the time-frequency characteristics of PD signal are obtained, including the center frequency, bandwidth, the starting point of PD and the approximate position of extinguishing point. The time-frequency parameters of the partial discharge signal matching atom library are optimized by using the time-frequency characteristic of partial discharge signal, and a small number of atoms are adaptively selected for optimal matching when MP calculation is carried out on the noisy partial discharge signal. The original PD pulse signal is represented sparsely by the best matching atoms obtained from each iteration to achieve the purpose of de-noising the PD signal. The simulation and experiments show that the two methods proposed in this paper can effectively solve the problem that the existing partial discharge signal denoising methods are complicated in the process of de-noising, slow calculation rate and incomplete de-noising. Waveform distortion after denoising.
【學(xué)位授予單位】:西南石油大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TM855
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 尚海昆;王坤;李峰;;基于集合經(jīng)驗(yàn)?zāi)B(tài)分解法的局部放電信號去噪[J];東北電力大學(xué)學(xué)報(bào);2016年04期
2 王恩俊;張建文;馬曉偉;馬鴻宇;;基于CEEMD-EEMD的局部放電閾值去噪新方法[J];電力系統(tǒng)保護(hù)與控制;2016年15期
3 何聰;袁川;曾偉;張安安;;XLPE高壓電力電纜局部放電檢測方法[J];電網(wǎng)與清潔能源;2016年05期
4 楊豐源;宋輝;程序;段大鵬;陶詩洋;侯慧娟;;基于改進(jìn)EEMD和Cohen類的局部放電信號聯(lián)合時(shí)頻分析[J];高電壓技術(shù);2016年07期
5 宋亞奇;周國亮;朱永利;李莉;王德文;;云平臺下并行總體經(jīng)驗(yàn)?zāi)B(tài)分解局部放電信號去噪方法[J];電工技術(shù)學(xué)報(bào);2015年18期
6 李軍浩;韓旭濤;劉澤輝;李彥明;;電氣設(shè)備局部放電檢測技術(shù)述評[J];高電壓技術(shù);2015年08期
7 張宇輝;劉夢婕;黃南天;段偉潤;李天云;;頻率切片小波變換在局部放電信號分析中的應(yīng)用[J];高電壓技術(shù);2015年07期
8 吳炬卓;牛海清;;基于提升小波分解的小波熵在抑制局部放電白噪聲干擾中的應(yīng)用[J];高壓電器;2014年12期
9 尚海昆;苑津莎;王瑜;靳松;;平移不變小波跡消噪方法在局部放電檢測中的應(yīng)用[J];電工技術(shù)學(xué)報(bào);2013年10期
10 陳剛;劉志剛;張巧革;;一種基于譜峭度的局部放電信號提取新方法[J];電力自動化設(shè)備;2013年08期
相關(guān)碩士學(xué)位論文 前7條
1 徐洋濤;基于HHT的電力電纜附件故障診斷技術(shù)研究[D];西南石油大學(xué);2016年
2 魯飛宇;希爾伯特—黃變換在變壓器局部放電信號去噪與模式識別中的應(yīng)用研究[D];西安電子科技大學(xué);2013年
3 陳偉璇;局部放電信號的去噪算法研究[D];華南理工大學(xué);2012年
4 周力;基于超高頻的電纜及其附件產(chǎn)品局部放電檢測系統(tǒng)的研究[D];湖南大學(xué);2012年
5 紀(jì)新宇;XLPE電纜接頭局部放電檢測與模式識別的研究[D];華北電力大學(xué);2012年
6 邵列;局部放電檢測系統(tǒng)中的信號去噪與模式識別的研究[D];西安電子科技大學(xué);2009年
7 張明霞;用小波技術(shù)濾除變壓器局部放電信號中噪聲的方法研究[D];重慶大學(xué);2007年
,本文編號:2300789
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/2300789.html