凝汽器的局部強(qiáng)化傳熱數(shù)值計(jì)算研究
[Abstract]:The condenser is the core facility of the condenser equipment, is an important link in the thermal cycle of the power plant to deal with exhausted steam, is the "cold end" of the thermal cycle of the power plant. The condenser vacuum degree, i.e. the condenser pressure, is an important index to characterize the condenser performance. If the condenser vacuum degree is too low, i.e. the condenser pressure is too high, it will affect the safe operation of steam turbine and return water pipeline and many other equipment. The condenser is mainly divided into two heat transfer areas, namely the main condensation area and the air-cooled area. The role of the zone is to condense most of the steam. The role of the air-cooled zone is to condense the remaining steam. The inclusion of non-condensable gas in the steam is cooled. The pumping load of the pumping equipment is reduced and the vacuum of the condenser is maintained basically unchanged. The mass content of non-condensable gases such as air inclusion increases correspondingly. Thermal resistance of heat transfer in air-cooled zone is higher than that in main condensation zone, and coefficient of heat transfer is lower than that in main condensation zone. The internal structure of the condenser or the use of new tube, from the overall improvement of the heat transfer effect of the condenser, or the improvement of condenser matched with the extraction equipment, improve the extraction effect, help to maintain the vacuum of the condenser. Especially using heat pump technology to enhance heat transfer in the air-cooled zone, let heat pump evaporator directly into the condenser air-cooled zone heat transfer, this field is basically blank. The heat transfer characteristics of heat pump evaporator tube bundles in the air-cooled zone were analyzed. 2. Based on the research team, the heat transfer characteristics of the air-cooled zone were analyzed. The physical model of local enhanced heat transfer in condenser is established in this paper. The mathematical model of local enhanced heat transfer in condenser is established according to the physical model. 3. The mathematical model of local enhanced heat transfer in condenser is used to numerically simulate various scales and configurations of the "quench zone" in the air-cooled zone. The results show that the pressure in the air-cooled zone decreases and the heat transfer coefficient in the air-cooled zone increases as long as the "quench zone" is set in the air-cooled zone. Two or three groups of adjacent heat exchanger tubes are set as "quench zone" in the air-cooled zone. The results show that the heat transfer effect is better when three groups of adjacent heat exchanger tubes are set as "quench zone", and the heat transfer effect is better when the "quench zone" is set at the rear of the air-cooled zone. Two or three groups of non-adjacent heat exchanger tubes are used as the "quench zone". The numerical results show that the heat transfer effect of setting two groups of adjacent heat exchanger tubes as the "quench zone" is better than that of setting three groups of non-adjacent heat exchanger tubes as the "quench zone", and the heat transfer effect of setting the "quench zone" in the rear section of the air-cooled zone is better. It is technically feasible to set up "quench zone" in the air-cooled zone, which is conducive to improving the heat transfer efficiency of condensers and improving the economy of power plants.
【學(xué)位授予單位】:山東大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TK264.11;TM62
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 楊紅軍,牛瑞朝;新技術(shù)新工藝在凝汽器就位安裝中的應(yīng)用[J];河北電力技術(shù);2000年06期
2 金軍杭;;西門子百萬等級超超臨界機(jī)組凝汽器結(jié)構(gòu)分析[J];電站輔機(jī);2007年02期
3 羅俊;;凝汽器低真空故障及診斷方法[J];科技經(jīng)濟(jì)市場;2007年08期
4 鮑引年;;提高凝汽器管端密封可靠性的方法[J];電業(yè)技術(shù)通訊;1958年02期
5 宋珊卿;;影響凝汽器管材選用的一些主要因素[J];電力技術(shù);1982年12期
6 石磊;凝汽器管維護(hù)管理的改善[J];發(fā)電設(shè)備;1987年12期
7 楊炳良;;石洞口第二發(fā)電廠凝汽器的選型和主要參數(shù)確定[J];電站輔機(jī);1991年02期
8 許立國,沈競為;不銹鋼凝汽器管的應(yīng)用選擇[J];山東電力技術(shù);2001年01期
9 鄭鳳才,安豐波;國內(nèi)凝汽器現(xiàn)狀分析與改造[J];華東電力;2002年03期
10 張家新;;凝汽器嚴(yán)密性對于機(jī)組運(yùn)行的影響及原因分析[J];山西電力;2006年05期
相關(guān)會議論文 前9條
1 王強(qiáng);張廣興;陳二松;;凝汽器管側(cè)泄漏危害及檢測方法[A];中國計(jì)量協(xié)會冶金分會2009年年會論文集[C];2009年
2 金成將;王永平;郭永明;;凝汽器在機(jī)組頻繁啟停狀態(tài)下的腐蝕與防護(hù)[A];第四屆火電行業(yè)化學(xué)(環(huán)保)專業(yè)技術(shù)交流會論文集[C];2013年
3 金成將;王永平;郭永明;;凝汽器在機(jī)組頻繁啟停狀態(tài)下的腐蝕與防護(hù)[A];全國火電300MW級機(jī)組能效對標(biāo)及競賽第四十二屆年會論文集[C];2013年
4 何朝輝;;核電650MW機(jī)組凝汽器的技術(shù)優(yōu)化[A];中國核科學(xué)技術(shù)進(jìn)展報(bào)告(第二卷)——中國核學(xué)會2011年學(xué)術(shù)年會論文集第2冊(鈾礦冶分卷、核能動力分卷(上))[C];2011年
5 閆光明;孫廣建;;凝汽器管束堵管原因分析[A];全國火電600MW機(jī)組技術(shù)協(xié)作會第13屆年會論文集[C];2009年
6 朱友;;350MW機(jī)組凝汽器不銹鋼管化學(xué)清洗[A];第四屆火電行業(yè)化學(xué)(環(huán)保)專業(yè)技術(shù)交流會論文集[C];2013年
7 韓傳偉;孫加生;;華能濟(jì)寧電廠100MW機(jī)組凝汽器改造[A];全國火電100MW級機(jī)組技術(shù)交流協(xié)作網(wǎng)第一屆年會論文集[C];2002年
8 崔北休;;600MW超臨界機(jī)組凝汽器焊接[A];第四屆安徽科技論壇安徽省電機(jī)工程學(xué)會分論壇論文集[C];2006年
9 陳逢志;胡明濤;;不銹鋼管式凝汽器安裝工藝探討[A];第四屆數(shù)控機(jī)床與自動化技術(shù)高層論壇論文集[C];2013年
相關(guān)碩士學(xué)位論文 前10條
1 張鵬;濱海電廠凝汽器陰極保護(hù)數(shù)值仿真研究[D];廣東海洋大學(xué);2015年
2 魏詩善;熱電車間汽輪發(fā)電機(jī)凝汽器節(jié)能改造技術(shù)經(jīng)濟(jì)性分析[D];華南理工大學(xué);2015年
3 李婷婷;火電廠凝汽器(火積)耗散分析[D];華北電力大學(xué);2015年
4 楊亮;基于集成神經(jīng)網(wǎng)絡(luò)的凝汽器故障診斷[D];華北電力大學(xué);2015年
5 楊蔣文;側(cè)向抽氣式窄帶狀凝汽器布管方案研究[D];上海電力學(xué)院;2016年
6 徐冰;凝汽器的局部強(qiáng)化傳熱數(shù)值計(jì)算研究[D];山東大學(xué);2017年
7 劉天成;凝汽器抽真空系統(tǒng)研究與性能優(yōu)化[D];山東大學(xué);2017年
8 丁燕;凝汽器動態(tài)數(shù)學(xué)模型及故障診斷系統(tǒng)研究[D];武漢大學(xué);2005年
9 曾碩;核電站凝汽器管束布置優(yōu)化及研究[D];上海交通大學(xué);2012年
10 曲建麗;電站凝汽器的數(shù)值模擬研究與應(yīng)用[D];山東大學(xué);2007年
,本文編號:2186939
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/2186939.html