ZW市負(fù)荷預(yù)測及配網(wǎng)規(guī)劃方案的多目標(biāo)群決策研究
[Abstract]:The reason why urban distribution network can become an important component of power system is not only because it can play an indispensable role in the rational allocation of resources. At the same time, it plays a great role in ensuring the quality of local power supply and promoting the development of local economy. Therefore, reasonable, scientific and perfect distribution network planning is particularly important. With the rapid development of economy, the original distribution network construction can not keep up with the speed of development. To a certain extent, it even restricts the development of the power system, and then affects the prosperity of the economy. In order to meet the demand of electric power load for the economic development of ZW city and the purpose of resource integration, it is necessary to plan and transform the distribution network reasonably and scientifically, and to make scientific and effective decision on the power network planning scheme at the same time. On the one hand, it can verify the effectiveness of the planning project, on the other hand, it can find out the problems existing in the distribution network planning project through decision-making research, which provides an important reference for other distribution network planning projects in the future. Power load forecasting is the basis and core of power supply planning, and power load forecasting is the basic work of urban power network planning, which plays a key role in the quality of power supply planning. Because the power load is affected by various uncertain random factors, and there are non-stationary, nonlinear and time-varying characteristics in the data series of power load, this paper changes the traditional power load forecasting method-space load forecasting method. The intelligent algorithm is applied to load forecasting in practical power network planning. The data sequence of power load is decomposed into a series of independent inherent mode functions and a residual function by means of the set empirical mode decomposition (Ensemble Empirical Mode decomposition). Genetic algorithm (GA) is used to give a certain weight to a series of functions after decomposition. Finally, according to the sequence characteristics of each function, the least square support vector machine (Least Square Support Vector machine) and the nonparametric generalized autoregressive conditional heteroscedasticity (NPGARCH) are used to predict each function. The result of target power load forecasting is obtained. An example shows that this method can effectively improve the accuracy of power load forecasting, thus providing a reliable basis for the scientific and security of distribution network planning. Secondly, the general situation of distribution network in ZW city is analyzed. From the goal, principle and emphasis of distribution network planning, the problems existing in each voltage grade of distribution network in this city are studied, and these problems are combined. This paper analyzes and studies the interest needs of the stakeholders involved in the distribution network planning, constructs the evaluation index of multi-objective group decision making, and puts forward a multi-objective group decision-making model of distribution network planning scheme based on entropy weight theory. The model is applied to the distribution network planning of ZW city. The results show that the distribution network planning scheme of ZW city meets the overall interests of all parties, so the plan is reasonable and scientific.
【學(xué)位授予單位】:華北電力大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TM715
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 邱是;;基于EMD分解與ARMA模型的電力負(fù)荷預(yù)測[J];四川水力發(fā)電;2016年01期
2 那迪;孫莉;張全;滿飛宇;陳云鶴;;不確定語言多屬性群決策中屬性權(quán)重確定方法[J];科技視界;2016年02期
3 孫義;黃海峰;丁建華;;多屬性群決策權(quán)重調(diào)整自適應(yīng)算法[J];計(jì)算機(jī)工程與應(yīng)用;2014年02期
4 劉達(dá);;基于誤差校正的中長期負(fù)荷預(yù)測模型[J];電網(wǎng)技術(shù);2012年08期
5 丁世飛;齊丙娟;譚紅艷;;支持向量機(jī)理論與算法研究綜述[J];電子科技大學(xué)學(xué)報(bào);2011年01期
6 任工昌;劉麗;苗新強(qiáng);;改進(jìn)灰色模型在電力負(fù)荷中的預(yù)測分析及實(shí)現(xiàn)[J];機(jī)械設(shè)計(jì)與制造;2010年02期
7 范高鋒;王偉勝;劉純;戴慧珠;;基于人工神經(jīng)網(wǎng)絡(luò)的風(fēng)電功率預(yù)測[J];中國電機(jī)工程學(xué)報(bào);2008年34期
8 王鴻斌;張立毅;胡志軍;;人工神經(jīng)網(wǎng)絡(luò)理論及其應(yīng)用[J];山西電子技術(shù);2006年02期
9 徐軍華,劉天琪;基于小波分解和人工神經(jīng)網(wǎng)絡(luò)的短期負(fù)荷預(yù)測[J];電網(wǎng)技術(shù);2004年08期
10 朱大奇;人工神經(jīng)網(wǎng)絡(luò)研究現(xiàn)狀及其展望[J];江南大學(xué)學(xué)報(bào);2004年01期
相關(guān)博士學(xué)位論文 前1條
1 王國勛;基于多目標(biāo)決策的數(shù)據(jù)挖掘模型選擇研究[D];電子科技大學(xué);2013年
相關(guān)碩士學(xué)位論文 前4條
1 劉劍沖;含分布式電源的城市配電網(wǎng)規(guī)劃方案綜合評價研究[D];華北電力大學(xué);2015年
2 祁之強(qiáng);智能電網(wǎng)環(huán)境下配電網(wǎng)規(guī)劃與運(yùn)營風(fēng)險(xiǎn)型決策模型研究[D];華北電力大學(xué);2015年
3 易于;配電網(wǎng)規(guī)劃方案的綜合評價與決策[D];上海電力學(xué)院;2012年
4 邴建平;基于多目標(biāo)群決策的區(qū)域水資源配置方案評價研究[D];河海大學(xué);2007年
,本文編號:2183166
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/2183166.html