一種混合橋臂的MMC研究及物理實(shí)現(xiàn)
[Abstract]:With the development of power electronics technology, (Voltage Source Converter based HVDC VSC-HVDC based on voltage source converter has been developed rapidly in the world. In the field of long distance and large capacity direct current transmission, overhead transmission is needed to take account of economic factors. In this way, the DC fault protection of flexible DC transmission system becomes very important. Among the methods of isolating DC faults by AC circuit breaker, DC circuit breaker and new topology converter, the converter topology with clamped DC fault has the advantages of fast response speed, less investment and no additional equipment. Very suitable for both ends or multi-terminal HVDC transmission systems. Among the new topologies, the hybrid bridge arm modularized multilevel converter (Modular Multilevel converter MMC), which consists of half-bridge and full-bridge sub-modules, combines the two most mature submodule topologies to reduce the loss. The reliability of DC fault clamping is ensured. Based on the analysis of the general MMC topology and the working principle of the half-bridge and full-bridge sub-modules, the topology of the bridge arm hybrid MMC is introduced, and the mathematical model of the equivalent circuit is given. The decoupling control strategy and valve level modulation and voltage equalization strategy based on rotating coordinate system are analyzed, and the minimum ratio of full bridge module required to realize DC fault locking is calculated, and the MMC simulation model of two-ended hybrid bridge arm is built in PSCAD/EMTDC. The rationality of steady-state and transient control strategies is verified. In order to better verify the working characteristics of the hybrid MMC topology, a low-voltage experimental prototype is designed and built. Firstly, according to the hierarchical control principle of the flexible direct current transmission system and the actual demand, the control system is divided into data acquisition system, station control layer, valve control layer and sub-module layer. According to the function division of each layer, the performance requirements of the function realization are determined. Select suitable main control chip and peripheral auxiliary circuit, design and manufacture controller card. Then, according to the functional requirements and mathematical model of the controller, the program flow chart is drawn, and the corresponding algorithm is implemented by using the hardware description language. After that, the timing coordination of the controller in various operating states is analyzed, and the communication rate is required by calculating the depth of the controller. Finally, the MMC primary system parameters of the hybrid arm are designed and the main equipment model is selected, and the experimental prototype is built. In order to verify the working characteristics of the hybrid bridge arm MMC, the steady and transient control experiments of the low voltage physical prototype were carried out. In the steady state experiment, the characteristics of DC voltage, capacitor voltage of submodule and outlet voltage of valve are analyzed. In the power step experiment, the fast response characteristic of controller is verified. The fault self-clearing capability of the topology is verified, which lays a foundation for the engineering application of the hybrid MMC topology.
【學(xué)位授予單位】:華北電力大學(xué)(北京)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TM721.1;TM46
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 吳婧;姚良忠;王志冰;李琰;楊波;曹遠(yuǎn)志;;直流電網(wǎng)MMC拓?fù)浼捌渲绷鞴收想娏髯钄喾椒ㄑ芯縖J];中國(guó)電機(jī)工程學(xué)報(bào);2015年11期
2 趙成勇;張寶順;倪曉軍;羅程;郭春義;肖湘寧;;MMC-HVDC物理模擬系統(tǒng)的控制器架構(gòu)設(shè)計(jì)[J];電力系統(tǒng)自動(dòng)化;2015年06期
3 張建坡;趙成勇;孫海峰;黃曉明;陸翌;裘鵬;;模塊化多電平換流器改進(jìn)拓?fù)浣Y(jié)構(gòu)及其應(yīng)用[J];電工技術(shù)學(xué)報(bào);2014年08期
4 郝曉鵬;;基于SignalTap Ⅱ和Modelsim的聯(lián)合仿真技術(shù)[J];計(jì)算機(jī)與網(wǎng)絡(luò);2014年13期
5 趙成勇;許建中;李探;;全橋型MMC-MTDC直流故障穿越能力分析[J];中國(guó)科學(xué):技術(shù)科學(xué);2013年01期
6 薛英林;徐政;;穩(wěn)態(tài)運(yùn)行和直流故障下橋臂交替導(dǎo)通多電平換流器的控制策略[J];高電壓技術(shù);2012年06期
7 姚鴻強(qiáng);陳榮榮;;基于FPGA的正弦波PWM信號(hào)發(fā)生器的設(shè)計(jì)[J];江南大學(xué)學(xué)報(bào)(自然科學(xué)版);2012年03期
8 鄭連清;池俊鋒;陳杰;;基于改進(jìn)鎖相環(huán)的柔性直流輸電系統(tǒng)控制研究[J];華北電力大學(xué)學(xué)報(bào)(自然科學(xué)版);2011年02期
9 屠卿瑞;徐政;鄭翔;管敏淵;;模塊化多電平換流器型直流輸電內(nèi)部環(huán)流機(jī)理分析[J];高電壓技術(shù);2010年02期
10 陳鑫;鄧小鶯;;Matlab環(huán)境下的全數(shù)字鎖相環(huán)仿真模型[J];微電子學(xué);2007年04期
相關(guān)博士學(xué)位論文 前3條
1 周月賓;模塊化多電平換流器型直流輸電系統(tǒng)的穩(wěn)態(tài)運(yùn)行解析和控制技術(shù)研究[D];浙江大學(xué);2014年
2 薛英林;適用于大容量架空線輸電的C-MMC型柔性直流技術(shù)研究[D];浙江大學(xué);2014年
3 許建中;模塊化多電平換流器電磁暫態(tài)高效建模方法研究[D];華北電力大學(xué);2014年
相關(guān)碩士學(xué)位論文 前6條
1 邵雷;模塊化多電平變流器控制系統(tǒng)的研制[D];北京交通大學(xué);2016年
2 劉汝峰;基于MMC-HVDC低壓物理實(shí)驗(yàn)裝置的控制策略及監(jiān)控系統(tǒng)設(shè)計(jì)與實(shí)驗(yàn)[D];山東大學(xué);2014年
3 郭敏;基于FPGA的MMC-HVDC系統(tǒng)物理控制器設(shè)計(jì)與RTDS仿真驗(yàn)證[D];華北電力大學(xué);2013年
4 張群;柔性直流輸電系統(tǒng)硬件平臺(tái)研究[D];青島科技大學(xué);2012年
5 路艷梅;全光纖電流互感器數(shù)據(jù)處理系統(tǒng)的FPGA設(shè)計(jì)[D];中北大學(xué);2009年
6 徐日升;基于FPGA的交流電機(jī)控制IP軟核的設(shè)計(jì)[D];西安理工大學(xué);2004年
,本文編號(hào):2173280
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/2173280.html