動力電池熱行為及其過熱性分析
[Abstract]:As the core technology of electric vehicles, the improvement and upgrading of power performance and economy is always the focus of research, but it is limited by cooling structure, materials, layout space and use conditions. It is easy to cause thermal safety problems due to the accumulation of heat in battery production. Obviously, this has become the technical bottleneck that limits the sustainable development of power battery. Therefore, there is an urgent need to study the thermodynamics and electrochemical characteristics of power batteries under different operating conditions, to understand and master the working performance of the batteries in essence, and to help to analyze and predict the thermal behavior of the batteries. It also provides reasonable and reliable reference for battery thermal management design and related control strategies. In this paper, the thermal and charging characteristics of Li-ion single cell under normal discharge, internal short circuit and three different operating conditions of high temperature mechanism are analyzed. Firstly, based on the electrochemical mechanism of the battery, the physical model of the single cell was established, and the variation mechanism of the cell temperature field, internal current distribution, electrochemical heat and joule heat was analyzed. A more systematic and comprehensive simulation analysis of lithium battery is established. The simulation results show that under adiabatic environment, the discharge rate of lithium battery directly affects the average temperature rise rate and temperature uniformity. With the increase of discharge rate, the temperature rise rate increases and the temperature uniformity becomes worse. In adiabatic environment, the initial temperature of the cell directly affects the temperature homogeneity of the cell. The lower the initial temperature, the worse the temperature uniformity of the cell. When the initial temperature is high, the average temperature rise rate of the cell increases. The battery temperature quickly exceeds the reasonable working range. The change of the average temperature of the battery is also affected by the different state of charge. The faster the increase rate of the temperature is when the charge is low. By analyzing and summarizing the influence of different factors such as short circuit depth, short circuit position, short circuit cross section and charge state on the performance of lithium ion battery, The conclusions are as follows: with the increase of the short circuit depth and the short circuit cross section, the maximum temperature and the maximum current in the short circuit region will increase. Compared with the inner short circuit in the center of the battery, the maximum temperature of the short circuit region increases significantly when the inner short circuit occurs in the edge region of the battery. In addition, the maximum temperature of the short circuit region increases with the increase of the battery charge. In the process of internal short circuit, the discharge rate has little effect on the maximum temperature in the short circuit region of the battery. Finally, the heat abuse model of the battery under high temperature is established, and the effects of temperature change and surface convection heat transfer coefficient on the cell characteristics are analyzed. The simulation results show that when the battery is working at a lower ambient temperature, the cell only exhibits the characteristics of temperature rise and does not trigger the decomposition side effects of various materials in the battery, and when the ambient temperature reaches a certain high temperature point, There will be a sharp temperature rise in the battery, that is, the thermal runaway side reaction of material decomposition in the battery will be triggered, and with the increase of the ambient temperature, the trigger time of the thermal runaway side reaction of the material decomposition in the battery will be advanced. In addition, at high temperature, the lower surface equivalent heat transfer coefficient of the battery is conducive to inhibit the occurrence of the thermal runaway reaction, and the higher surface equivalent heat transfer coefficient of the battery will trigger the heat runaway state of the battery ahead of time.
【學位授予單位】:吉林大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TM912
【相似文獻】
相關期刊論文 前9條
1 任瑩輝;儀建華;趙鳳起;陳智群;胡榮祖;宋紀蓉;;苦味酸鉍的合成、分解反應動力學及熱安全性(英文)[J];火炸藥學報;2010年05期
2 周誠;王伯周;王友兵;潘清;蘇鵬飛;康冰;田宏遠;;3,6-二氨基-1,2,4,5-四嗪的百克量合成、晶體結構和熱行為[J];火炸藥學報;2014年02期
3 孫建平,諸葛蘭劍,張可達,徐冬梅,翟金星,吳雪梅;兩性聚電解質復合物的熱行為研究[J];現(xiàn)代科學儀器;1998年05期
4 徐抗震;趙鳳起;丁黎;王晗;李夢;常春然;馬海霞;宋紀蓉;;二硝酰胺胍(GDN)的晶體結構和熱行為(英文)[J];含能材料;2008年05期
5 劉學清,劉繼延,張遠方;封閉型聚氨酯微波固化過程中的熱行為[J];絕緣材料;2004年06期
6 徐抗震;左現(xiàn)剛;宋紀蓉;王鋒;黃潔;常春然;;K(FOX-7)·H_2O的合成、晶體結構和熱行為[J];高等學;瘜W學報;2010年04期
7 張臘瑩;朱欣華;卿輝;霍歡;儀建華;白娟;丁黎;;3,4-雙(3',5'-二硝基苯-1'-基)氧化呋咱的熱行為和非等溫熱分解動力學研究(英文)[J];固體火箭技術;2011年05期
8 陳詠順;徐抗震;王敏;馬海霞;趙鳳起;;Cu(NH_3)_2(FOX-7)_2的晶體結構和熱行為[J];火炸藥學報;2011年04期
9 劉曉文;劉莊;鐘鋼;毛小西;;Zr/Al基柱撐蒙脫石的熱行為[J];中南大學學報(自然科學版);2010年06期
相關會議論文 前3條
1 王松蕊;盧立麗;劉興江;;鋰離子電池正極材料對電池熱行為的影響[A];第29屆全國化學與物理電源學術年會論文集[C];2011年
2 肖士潔;呂紅紅;童元建;徐j華;陳標華;;聚丙烯腈纖維熱穩(wěn)定化過程中幾種熱行為的比較[A];復合材料:創(chuàng)新與可持續(xù)發(fā)展(上冊)[C];2010年
3 肖士潔;呂紅紅;童元建;徐j華;陳標華;;聚丙烯腈纖維熱穩(wěn)定化過程中幾種熱行為的比較[A];復合材料:創(chuàng)新與可持續(xù)發(fā)展(上冊)[C];2010年
相關博士學位論文 前1條
1 劉賢豪;山崳酸銀納米晶體的制備、熱行為及應用研究[D];北京化工大學;2006年
相關碩士學位論文 前6條
1 李帥磊;不對稱1,2,4,5-四嗪類含能材料的合成、結構及熱行為研究[D];西北大學;2016年
2 薛寧;動力電池熱行為及其過熱性分析[D];吉林大學;2017年
3 買濤;1,2,4,5-四嗪鹽的合成、表征、結構解析、理論計算、熱行為以及熱力學研究[D];西北大學;2012年
4 李軍鋒;四嗪類含能化合物的合成、量子化學計算、熱行為及非等溫熱分解動力學研究[D];西北大學;2011年
5 姜丹;熱塑性樹脂端基結構及其熱行為的研究[D];北京化工大學;2001年
6 陳詠順;FOX-7、DNDZ含能配合物的合成、結構和性質研究[D];西北大學;2012年
,本文編號:2172854
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/2172854.html