基于大數(shù)據(jù)的電力系統(tǒng)信息質(zhì)量評估
[Abstract]:With the increase of the scale of power system, the development of measurement technology and the decrease of cost, the amount of data in power system is increasing rapidly and gradually has the characteristics of big data. Making full use of big data to improve power system planning, operation and control has been paid more and more attention. Therefore, how to evaluate the quality of big data is an important issue worth studying. Many researches have been reported on data quality improvement techniques such as data cleaning, data integration, similar record detection and so on. However, in the evaluation of data quality, the research work is still quite preliminary. Under this background, a comprehensive evaluation method of power big data quality is proposed for the characteristics of power system and power big data quality. For mass evaluation, sometimes the actual distribution of various kinds of quality is very different, so it is more reasonable to adopt the combined evaluation method, so the entropy weight method and the grey class evaluation method are combined together. The power big data quality assessment model is constructed on Hadoop platform, which lists the steps of power big data state evaluation in detail. In this paper, power system data is taken as the main research object, the main problems of power system data quality are expounded, referring to the international standard ISO/IEC 25012, and the quality problems of power system and the characteristics of power big data are discussed. Firstly, the general index of power system data quality evaluation is abstracted, and the index system of power big data quality evaluation is constructed. Aiming at the timeliness of big data processing, MapReduce parallel K-means clustering algorithm is used to realize the fast preprocessing of big data sample set. Then the objective weights of all kinds of data sets in the index system are calculated by using entropy weight method. Finally, the data collected by a power company in a certain city are analyzed by an example, and the grade of data quality is judged by grey evaluation method. On this basis, the comprehensive evaluation of the sample data set is realized. The calculation results show that the proposed method can describe the index system quantitatively through business rules and requirements, and the grey entropy weight comprehensive evaluation method has a good performance in evaluating the quality of big data in terms of time efficiency.
【學(xué)位授予單位】:華北電力大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TM73
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李剛;楊立業(yè);劉福炎;俞敏;宋雨;文福拴;;能源互聯(lián)網(wǎng)關(guān)聯(lián)數(shù)據(jù)融合的互信息方法[J];電力建設(shè);2016年09期
2 劉世成;張東霞;朱朝陽;李維東;盧文冰;張敏杰;;能源互聯(lián)網(wǎng)中大數(shù)據(jù)技術(shù)思考[J];電力系統(tǒng)自動化;2016年08期
3 章元德;史亮;陸巍;張征凱;趙成;裴倩;;線損信息化統(tǒng)計(jì)中數(shù)據(jù)質(zhì)量管控機(jī)制及實(shí)現(xiàn)[J];電力系統(tǒng)自動化;2016年07期
4 劉曉悅;郭強(qiáng);;海量用電數(shù)據(jù)并行聚類分析[J];遼寧工程技術(shù)大學(xué)學(xué)報(bào)(自然科學(xué)版);2016年01期
5 高峰;劉廣一;Chris Saunders;朱文東;陳振宇;于洋;;智能電網(wǎng)大數(shù)據(jù)的分析與應(yīng)用(英文)[J];電力建設(shè);2015年10期
6 李仕瓊;;數(shù)據(jù)挖掘中關(guān)聯(lián)規(guī)則挖掘算法的分析研究[J];電子技術(shù)與軟件工程;2015年04期
7 彭小圣;鄧迪元;程時(shí)杰;文勁宇;李朝暉;牛林;;面向智能電網(wǎng)應(yīng)用的電力大數(shù)據(jù)關(guān)鍵技術(shù)[J];中國電機(jī)工程學(xué)報(bào);2015年03期
8 余本功;汪柳;郭鳳藝;;基于灰色模糊層次分析法的企業(yè)云服務(wù)安全評價(jià)模型[J];計(jì)算機(jī)應(yīng)用;2014年S2期
9 孫世國;黃志敏;葉尚興;江友華;;基于分布式光纖的電力電纜檢測數(shù)據(jù)質(zhì)量優(yōu)化技術(shù)[J];電力建設(shè);2014年09期
10 張道天;嚴(yán)正;韓冬;張娜娜;陳輝;余南華;;采用灰色聚類方法的智能變電站技術(shù)先進(jìn)性評價(jià)[J];電網(wǎng)技術(shù);2014年07期
相關(guān)碩士學(xué)位論文 前3條
1 張依;基于MapReduce的k-means聚類算法并行化研究[D];中央民族大學(xué);2015年
2 張慧娟;異常數(shù)據(jù)檢驗(yàn)的幾種方法[D];燕山大學(xué);2012年
3 叢慧剛;基于業(yè)務(wù)規(guī)則的數(shù)據(jù)中心數(shù)據(jù)質(zhì)量研究[D];東北石油大學(xué);2012年
,本文編號:2148551
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/2148551.html