大型風(fēng)電場(chǎng)短期風(fēng)電功率預(yù)測(cè)技術(shù)研究
[Abstract]:With the rapid growth of the installed capacity of wind power in China, the proportion of wind power in the power network is increasing, and large-scale wind power grid connection brings serious impact on the safe operation of power system. Effective wind farm power prediction can provide reference for power grid stable operation and dispatching. Aiming at the problem of low precision and instability of traditional power prediction in large-scale wind farms, this paper presents an intelligent optimized power prediction model for grouping large wind farms. The specific research contents are as follows: firstly, The parameter characteristics of large scale wind farm are analyzed and regular statistics are made. The characteristics of wind speed and wind direction of large scale wind farm are studied. The relationship between wind speed, wind direction, temperature and generation power is analyzed. The parameter characteristics of large scale wind farm are accurately located. Secondly, aiming at the problem of incomplete and bad points of data collected by large-scale wind farms, the actual power characteristic curve of fan is used to eliminate the data and the correlation coefficient matrix method is used to fill the data. Aiming at the phenomenon of burrs and spikes caused by noise and other factors, a new particle filter is used to filter the wind speed data in the wind field to eliminate the burr of the wind speed and to smooth the data. The processed data is taken as the input data of the prediction model. Then, aiming at the parameter selection of single-machine power prediction model in large-scale wind farm, the parameters of the model are optimized by improved artificial fish swarm algorithm. For the limitation of fixed visual field and step size in fish swarm algorithm, this paper automatically adjusts the visual field and step size of fish herd in foraging and rear-end behavior by adding adaptive adjustment factor. The problem of slow searching speed and easy to fall into local minimum is solved, and the improved algorithm is proved to be effective by different test function experiments. Finally, the power prediction model of wind farm with improved fish swarm optimization support vector machine is established, and the power prediction of two typical wind field fans is studied. Finally, in view of the instability of multi-typhoon prediction in large-scale wind farms and the low precision of traditional forecasting methods, a power prediction strategy of wind farm grouping based on wind speed distribution characteristic sampling and cross-correlation is adopted in this paper. This strategy is combined with improved fish swarm optimization support vector machine to establish the intelligent optimal power prediction model for large wind farm grouping. Two typical wind field examples on land and offshore are simulated to verify the application effect of the prediction model. A set of wind farm power prediction system software is designed, and the proposed method is verified by engineering.
【學(xué)位授予單位】:上海電機(jī)學(xué)院
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:TM614
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 柳超;李秀友;黃勇;;優(yōu)化的多模型粒子濾波機(jī)動(dòng)微弱目標(biāo)檢測(cè)前跟蹤方法[J];信號(hào)處理;2015年09期
2 李琦;李曉航;邢麗萍;邵誠;;基于l_p-范數(shù)約束的LSSVR多核學(xué)習(xí)算法[J];控制與決策;2015年09期
3 高雷阜;高晶;趙世杰;;人工魚群算法優(yōu)化SVR的預(yù)測(cè)模型[J];統(tǒng)計(jì)與決策;2015年07期
4 李超;王洪濤;韋仲康;王春義;;含大型風(fēng)電場(chǎng)的弱同步電網(wǎng)協(xié)調(diào)控制策略[J];電力自動(dòng)化設(shè)備;2015年04期
5 薛禹勝;郁琛;趙俊華;Kang LI;Xueqin LIU;Qiuwei WU;Guangya YANG;;關(guān)于短期及超短期風(fēng)電功率預(yù)測(cè)的評(píng)述[J];電力系統(tǒng)自動(dòng)化;2015年06期
6 呂敬;施剛;蔡旭;饒宏;黎小林;;大型風(fēng)電場(chǎng)經(jīng)VSC-HVDC交直流并聯(lián)系統(tǒng)并網(wǎng)的運(yùn)行控制策略[J];電網(wǎng)技術(shù);2015年03期
7 陳奎;韋曉廣;陳景波;?∑;;基于樣本數(shù)據(jù)處理和ADABOOST的小電流接地故障選線[J];中國電機(jī)工程學(xué)報(bào);2014年34期
8 王棟;;基于動(dòng)態(tài)插值和支持向量機(jī)的軟測(cè)量建模研究[J];自動(dòng)化與儀器儀表;2014年11期
9 吉鵬飛;齊建東;朱文飛;;改進(jìn)人工魚群算法在Hadoop作業(yè)調(diào)度算法的應(yīng)用[J];計(jì)算機(jī)應(yīng)用研究;2014年12期
10 張文秀;武新芳;陸豪乾;;風(fēng)電功率預(yù)測(cè)技術(shù)綜述與改進(jìn)建議[J];電力與能源;2014年04期
相關(guān)博士學(xué)位論文 前7條
1 雷瀟;風(fēng)電機(jī)組短期可靠性預(yù)測(cè)模型與風(fēng)電場(chǎng)有功功率控制策略研究[D];重慶大學(xué);2014年
2 李家星;醫(yī)學(xué)無創(chuàng)光譜檢測(cè)中若干關(guān)鍵技術(shù)的研究[D];天津大學(xué);2014年
3 李文華;新時(shí)期國家能源發(fā)展戰(zhàn)略問題研究[D];南開大學(xué);2013年
4 史潔;風(fēng)電場(chǎng)功率超短期預(yù)測(cè)算法優(yōu)化研究[D];華北電力大學(xué);2012年
5 靜鐵巖;大規(guī)模風(fēng)電并網(wǎng)條件下的電力系統(tǒng)有功功率平衡理論研究[D];大連理工大學(xué);2011年
6 王揚(yáng);風(fēng)電短期預(yù)測(cè)及其并網(wǎng)調(diào)度方法研究[D];浙江大學(xué);2011年
7 李曉磊;一種新型的智能優(yōu)化方法-人工魚群算法[D];浙江大學(xué);2003年
相關(guān)碩士學(xué)位論文 前4條
1 管志威;近海風(fēng)電場(chǎng)短期功率預(yù)測(cè)技術(shù)研究[D];華東理工大學(xué);2014年
2 胡慶有;含大規(guī)模風(fēng)光互補(bǔ)電力的電力系統(tǒng)動(dòng)態(tài)經(jīng)濟(jì)調(diào)度研究[D];西南交通大學(xué);2013年
3 丁志勇;風(fēng)電場(chǎng)短期功率預(yù)測(cè)方法研究[D];華南理工大學(xué);2012年
4 秦云甫;我國風(fēng)電產(chǎn)業(yè)發(fā)展問題分析與解決途徑[D];華北電力大學(xué);2012年
,本文編號(hào):2146555
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/2146555.html