基于動力學(xué)耦合的風(fēng)電機(jī)組載荷控制
[Abstract]:The wind turbine is becoming more and more large, the structure flexibility increases, the low frequency fluctuation of the wind wheel load is very easy to trigger the transmission chain, the tower frame and the vibration of the blade. The main research work is on the load control problem of the wind turbine. 1. The wind wheel load characteristics are analyzed according to the wind shear index model and the wind wheel diameter to the wind wheel load under the complex wind condition. The influence of the upper air flow to the tower shadow effect model is used to analyze the influence of the tower tube on the wind velocity distribution. Based on the Kaimal spectrum, the wind turbulence model is established to analyze the influence of turbulence on the wind velocity distribution on the wind wheel surface. The results show that the wind shear is the dominant factor of the periodic variation of the load in the wind turbine, wind turbulence and the wake effect cause the wind wheel. The load fluctuation of the multi blade is asymmetrical. The load fluctuation of the wind wheel is transmitted to the other components of the unit as the periodic excitation force. When the excitation frequency is consistent with the natural frequencies of other components, a large amplitude resonance.2 can be produced. A dynamic load model of the wind turbine is set up based on the Ye Sudong theory to establish the static load model of the wind wheel. For the deficiency of the leaf prime momentum theory, the loss correction, the inducer correction, the dynamic inflow correction, the dynamic stall correction, which make the wind wheel load model applicable to the dynamic load calculation, are studied. The modal calculation method of the blade and the tower is derived according to the material mechanics, the modal of the blade and the tower is studied, and the wind is constructed by the modal superposition method. The dynamic model of the structure of the tower is modeled. According to the main dynamic characteristics of the transmission chain, the variable propeller system and the motor system, the load calculation of the wind turbine is realized by using the discrete numerical calculation method (.3). The power control method of the wind turbine based on the LPV gain scheduling is proposed to study the speed characteristics of the wind turbine in the complex wind turbine. The wind turbine inertia and the state estimation wind speed are introduced into the variable propeller control, which enhances the ability of the wind turbine control system to respond to the change of wind speed and stabilizes the power output of the unit. The wind turbine is a nonlinear vector system, the steady-state trajectory of the system is a spatial curve, and the LPV gain scheduling method is proposed to control the power of the wind turbine, LPV The operation trajectory of the wind turbine is stable in the operating domain, and the stability of the power output of the wind turbine is enhanced by.4. The load control strategy of the wind turbine which can reduce the transmission chain, the tower and the fatigue load of the blade is studied. The torsional vibration characteristics of the transmission chain are studied. The state of the transmission chain is estimated with the Kalman filter, and the torque of the generator is used to pass the generator torque. Control, adding damping control in the transmission chain, restraining the torsional vibration of the transmission chain, slowing down the fatigue load of the gear and prolonging its fatigue life. The vibration characteristics of the tower are studied. The tower frame has the aerodynamic damping effect in the front and back, and the tower is very easy to have large amplitude vibration in the lateral damping, and the tower is added to the variable paddle control and the generator torque control. The frame damping control reduces the swing amplitude of the tower and enhances the reliability of the operation of the unit. The characteristics of the blade load fluctuation in the complex wind condition are studied. The independent variable propeller control is proposed to reduce the blade fatigue load. The independent variable propeller control takes the load of the three blades as periodic symmetry, and the load harmonic in the blade is realized through the transformation of the DQ coordinates. Using the PI control of the gain scheduling to reduce the fluctuation of the blade load, the asymmetric load problem of the wind turbine is studied. The symmetric component method is applied to the independent variable propeller control, and the asymmetrical wind wheel system is composed of 3 subsystems, positive sequence, negative sequence and zero sequence. The independent variable propeller control is used in the positive sequence and negative sequence subsystems. The unsymmetrical load of the wind wheel is suppressed. The independent variable propeller control based on three kinds of load measurement is studied. The load under the coordinate system of the blade, the load in the hub coordinate system and the load in the cabin coordinate system can improve the reliability of the independent variable propeller control system.
【學(xué)位授予單位】:華北電力大學(xué)(北京)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2017
【分類號】:TM315
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張豐豪;何榕;;結(jié)構(gòu)阻尼對風(fēng)力機(jī)塔架振動特性的影響[J];太陽能學(xué)報;2015年10期
2 左姍;王磊;宋慶旺;宋永端;;基于載荷優(yōu)化的漂浮式海上風(fēng)力發(fā)電機(jī)組變槳距控制研究[J];太陽能學(xué)報;2015年09期
3 劉雄;梁濕;陳嚴(yán);張石強;陳淳;;風(fēng)力機(jī)翼型動態(tài)失速氣動特性仿真[J];工程力學(xué);2015年03期
4 陶學(xué)軍;盧曉光;;基于控制方法的風(fēng)機(jī)塔架減振研究[J];機(jī)電工程;2014年03期
5 姚振南;高俊云;連晉華;;雙饋風(fēng)電機(jī)組控制策略及傳動鏈加阻研究[J];機(jī)械工程與自動化;2013年04期
6 崔雙喜;王維慶;張新燕;;大型風(fēng)力發(fā)電機(jī)組無模型獨立變槳載荷控制[J];電力系統(tǒng)保護(hù)與控制;2013年05期
7 杜靜;謝雙義;王磊;羅敏;金鑫;;變速變槳風(fēng)力發(fā)電機(jī)組塔架的側(cè)向振動控制[J];中國電力;2012年06期
8 張琳;仇衛(wèi)東;;大規(guī)模風(fēng)電脫網(wǎng)事故的幾點思考[J];電力建設(shè);2012年03期
9 鄭宇;;基于神經(jīng)元PID的風(fēng)力發(fā)電機(jī)組獨立變槳控制[J];水電能源科學(xué);2012年02期
10 魯效平;顧海港;林勇剛;李偉;劉宏偉;;基于獨立變槳距技術(shù)的風(fēng)力發(fā)電機(jī)組載荷控制研究[J];太陽能學(xué)報;2011年11期
相關(guān)博士學(xué)位論文 前3條
1 何偉;湍流風(fēng)場模擬與風(fēng)力發(fā)電機(jī)組載荷特性研究[D];華北電力大學(xué);2013年
2 劉姝;變速恒頻雙饋風(fēng)電機(jī)組最優(yōu)功率控制研究[D];沈陽工業(yè)大學(xué);2013年
3 王磊;海上風(fēng)電機(jī)組系統(tǒng)動力學(xué)建模及仿真分析研究[D];重慶大學(xué);2011年
相關(guān)碩士學(xué)位論文 前4條
1 羅超;3MW海上風(fēng)電機(jī)抗臺風(fēng)特性研究[D];集美大學(xué);2014年
2 雷航;水平軸風(fēng)電機(jī)組風(fēng)輪系統(tǒng)動態(tài)載荷特性研究[D];華北電力大學(xué);2014年
3 張丹;風(fēng)電機(jī)組風(fēng)輪不平衡載荷的影響分析與控制[D];華北電力大學(xué);2014年
4 周潔;變速變槳距風(fēng)力發(fā)電機(jī)組的線性變參數(shù)增益調(diào)度控制[D];沈陽工業(yè)大學(xué);2009年
,本文編號:2141480
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/2141480.html