天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 科技論文 > 電氣論文 >

基于動(dòng)力學(xué)耦合的風(fēng)電機(jī)組載荷控制

發(fā)布時(shí)間:2018-07-24 13:08
【摘要】:風(fēng)電機(jī)組日趨大型化,結(jié)構(gòu)柔性增加,風(fēng)輪載荷的低頻波動(dòng),極易引發(fā)傳動(dòng)鏈、塔架、葉片的振動(dòng)。針對(duì)風(fēng)電機(jī)組載荷控制問(wèn)題,主要研究工作:1、研究了復(fù)雜風(fēng)況下風(fēng)輪載荷特性根據(jù)風(fēng)切變的指數(shù)模型分析了風(fēng)切變指數(shù)、風(fēng)輪直徑對(duì)風(fēng)輪載荷的影響。使用上風(fēng)向塔影效應(yīng)模型,分析塔筒對(duì)風(fēng)速分布的影響。基于Kaimal譜建立了風(fēng)湍流模型,分析湍流對(duì)風(fēng)輪面上風(fēng)速分布的影響。結(jié)果表明,風(fēng)切變、塔影效應(yīng)是風(fēng)電機(jī)組中載荷周期性變化的主導(dǎo)因素,風(fēng)湍流、尾流效應(yīng)致使風(fēng)輪多葉片載荷出現(xiàn)不對(duì)稱。風(fēng)輪載荷波動(dòng)傳遞到機(jī)組其它部件成為周期性的激勵(lì)力,當(dāng)激勵(lì)頻率與其它部件固有頻率一致時(shí)可產(chǎn)生大幅度的共振。2、建立了基于動(dòng)力學(xué)的風(fēng)電機(jī)組載荷模型基于葉素動(dòng)量理論建立了風(fēng)輪靜態(tài)載荷模型,針對(duì)葉素動(dòng)量理論的不足,研究了葉尖輪轂損失修正、誘導(dǎo)因子修正、動(dòng)態(tài)入流修正、動(dòng)態(tài)失速修正,使風(fēng)輪載荷模型適用于動(dòng)態(tài)載荷計(jì)算。依據(jù)材料力學(xué)推導(dǎo)了葉片、塔架的模態(tài)計(jì)算方法,研究了葉片、塔架的模態(tài),通過(guò)模態(tài)疊加法構(gòu)建了風(fēng)輪、塔架的結(jié)構(gòu)動(dòng)力學(xué)模型。根據(jù)傳動(dòng)鏈、變槳系統(tǒng)、電機(jī)系統(tǒng)的主要?jiǎng)討B(tài)特性建模。提出使用離散數(shù)值計(jì)算方法實(shí)現(xiàn)風(fēng)電機(jī)組的載荷計(jì)算。3、提出了基于LPV增益調(diào)度的風(fēng)電機(jī)組功率控制方法研究了復(fù)雜風(fēng)況下風(fēng)電機(jī)組風(fēng)輪轉(zhuǎn)速特性,將風(fēng)輪慣性、狀態(tài)估計(jì)風(fēng)速引入變槳控制中,增強(qiáng)了風(fēng)電機(jī)組控制系統(tǒng)應(yīng)對(duì)風(fēng)速變化的能力,穩(wěn)定了機(jī)組的功率輸出。風(fēng)電機(jī)組是一個(gè)非線性的矢量系統(tǒng),系統(tǒng)的穩(wěn)態(tài)軌跡是一條空間曲線,提出使用LPV增益調(diào)度方法控制風(fēng)電機(jī)組的功率,LPV增益調(diào)度控制將風(fēng)電機(jī)組運(yùn)行軌跡穩(wěn)定在運(yùn)行域內(nèi),增強(qiáng)了風(fēng)電機(jī)組功率輸出的穩(wěn)定性。4、研究了可降低傳動(dòng)鏈、塔架、葉片疲勞載荷的風(fēng)電機(jī)組載荷控制策略研究了傳動(dòng)鏈的扭振特性,使用Kalman濾波估計(jì)傳動(dòng)鏈的狀態(tài),通過(guò)發(fā)電機(jī)轉(zhuǎn)矩控制,在傳動(dòng)鏈中增加阻尼控制,抑制了傳動(dòng)鏈的扭振,減緩齒輪的疲勞載荷,延長(zhǎng)其疲勞壽命。研究了塔架的擺振特性,塔架在前后向存在氣動(dòng)阻尼作用,塔架在側(cè)向阻尼很小極易發(fā)生大幅度振動(dòng),在變槳控制和發(fā)電機(jī)轉(zhuǎn)矩控制中增加塔架阻尼控制,降低了塔架擺動(dòng)幅度,增強(qiáng)了機(jī)組運(yùn)行的可靠性。研究了復(fù)雜風(fēng)況下葉片載荷波動(dòng)的特性,提出了獨(dú)立變槳控制降低葉片疲勞載荷。獨(dú)立變槳控制把三個(gè)葉片的載荷看成周期性對(duì)稱的,通過(guò)dq坐標(biāo)變換,實(shí)現(xiàn)葉片載荷中諧波分量的提取,應(yīng)用增益調(diào)度的PI控制,降低了葉片載荷的波動(dòng)。研究了風(fēng)輪不對(duì)稱載荷問(wèn)題,將對(duì)稱分量法用于獨(dú)立變槳控制,把不對(duì)稱風(fēng)輪系統(tǒng)看作由正序、負(fù)序、零序3個(gè)子系統(tǒng)組合而成。在正序、負(fù)序子系統(tǒng)中使用獨(dú)立變槳控制,有效的抑制了風(fēng)輪不對(duì)稱載荷。研究了基于三種載荷測(cè)量量的獨(dú)立變槳控制,分別為葉片坐標(biāo)系下的載荷,輪轂坐標(biāo)系下的載荷,機(jī)艙坐標(biāo)系下的載荷,提高了獨(dú)立變槳控制系統(tǒng)的可靠性。
[Abstract]:The wind turbine is becoming more and more large, the structure flexibility increases, the low frequency fluctuation of the wind wheel load is very easy to trigger the transmission chain, the tower frame and the vibration of the blade. The main research work is on the load control problem of the wind turbine. 1. The wind wheel load characteristics are analyzed according to the wind shear index model and the wind wheel diameter to the wind wheel load under the complex wind condition. The influence of the upper air flow to the tower shadow effect model is used to analyze the influence of the tower tube on the wind velocity distribution. Based on the Kaimal spectrum, the wind turbulence model is established to analyze the influence of turbulence on the wind velocity distribution on the wind wheel surface. The results show that the wind shear is the dominant factor of the periodic variation of the load in the wind turbine, wind turbulence and the wake effect cause the wind wheel. The load fluctuation of the multi blade is asymmetrical. The load fluctuation of the wind wheel is transmitted to the other components of the unit as the periodic excitation force. When the excitation frequency is consistent with the natural frequencies of other components, a large amplitude resonance.2 can be produced. A dynamic load model of the wind turbine is set up based on the Ye Sudong theory to establish the static load model of the wind wheel. For the deficiency of the leaf prime momentum theory, the loss correction, the inducer correction, the dynamic inflow correction, the dynamic stall correction, which make the wind wheel load model applicable to the dynamic load calculation, are studied. The modal calculation method of the blade and the tower is derived according to the material mechanics, the modal of the blade and the tower is studied, and the wind is constructed by the modal superposition method. The dynamic model of the structure of the tower is modeled. According to the main dynamic characteristics of the transmission chain, the variable propeller system and the motor system, the load calculation of the wind turbine is realized by using the discrete numerical calculation method (.3). The power control method of the wind turbine based on the LPV gain scheduling is proposed to study the speed characteristics of the wind turbine in the complex wind turbine. The wind turbine inertia and the state estimation wind speed are introduced into the variable propeller control, which enhances the ability of the wind turbine control system to respond to the change of wind speed and stabilizes the power output of the unit. The wind turbine is a nonlinear vector system, the steady-state trajectory of the system is a spatial curve, and the LPV gain scheduling method is proposed to control the power of the wind turbine, LPV The operation trajectory of the wind turbine is stable in the operating domain, and the stability of the power output of the wind turbine is enhanced by.4. The load control strategy of the wind turbine which can reduce the transmission chain, the tower and the fatigue load of the blade is studied. The torsional vibration characteristics of the transmission chain are studied. The state of the transmission chain is estimated with the Kalman filter, and the torque of the generator is used to pass the generator torque. Control, adding damping control in the transmission chain, restraining the torsional vibration of the transmission chain, slowing down the fatigue load of the gear and prolonging its fatigue life. The vibration characteristics of the tower are studied. The tower frame has the aerodynamic damping effect in the front and back, and the tower is very easy to have large amplitude vibration in the lateral damping, and the tower is added to the variable paddle control and the generator torque control. The frame damping control reduces the swing amplitude of the tower and enhances the reliability of the operation of the unit. The characteristics of the blade load fluctuation in the complex wind condition are studied. The independent variable propeller control is proposed to reduce the blade fatigue load. The independent variable propeller control takes the load of the three blades as periodic symmetry, and the load harmonic in the blade is realized through the transformation of the DQ coordinates. Using the PI control of the gain scheduling to reduce the fluctuation of the blade load, the asymmetric load problem of the wind turbine is studied. The symmetric component method is applied to the independent variable propeller control, and the asymmetrical wind wheel system is composed of 3 subsystems, positive sequence, negative sequence and zero sequence. The independent variable propeller control is used in the positive sequence and negative sequence subsystems. The unsymmetrical load of the wind wheel is suppressed. The independent variable propeller control based on three kinds of load measurement is studied. The load under the coordinate system of the blade, the load in the hub coordinate system and the load in the cabin coordinate system can improve the reliability of the independent variable propeller control system.
【學(xué)位授予單位】:華北電力大學(xué)(北京)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類號(hào)】:TM315

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 張豐豪;何榕;;結(jié)構(gòu)阻尼對(duì)風(fēng)力機(jī)塔架振動(dòng)特性的影響[J];太陽(yáng)能學(xué)報(bào);2015年10期

2 左姍;王磊;宋慶旺;宋永端;;基于載荷優(yōu)化的漂浮式海上風(fēng)力發(fā)電機(jī)組變槳距控制研究[J];太陽(yáng)能學(xué)報(bào);2015年09期

3 劉雄;梁濕;陳嚴(yán);張石強(qiáng);陳淳;;風(fēng)力機(jī)翼型動(dòng)態(tài)失速氣動(dòng)特性仿真[J];工程力學(xué);2015年03期

4 陶學(xué)軍;盧曉光;;基于控制方法的風(fēng)機(jī)塔架減振研究[J];機(jī)電工程;2014年03期

5 姚振南;高俊云;連晉華;;雙饋風(fēng)電機(jī)組控制策略及傳動(dòng)鏈加阻研究[J];機(jī)械工程與自動(dòng)化;2013年04期

6 崔雙喜;王維慶;張新燕;;大型風(fēng)力發(fā)電機(jī)組無(wú)模型獨(dú)立變槳載荷控制[J];電力系統(tǒng)保護(hù)與控制;2013年05期

7 杜靜;謝雙義;王磊;羅敏;金鑫;;變速變槳風(fēng)力發(fā)電機(jī)組塔架的側(cè)向振動(dòng)控制[J];中國(guó)電力;2012年06期

8 張琳;仇衛(wèi)東;;大規(guī)模風(fēng)電脫網(wǎng)事故的幾點(diǎn)思考[J];電力建設(shè);2012年03期

9 鄭宇;;基于神經(jīng)元PID的風(fēng)力發(fā)電機(jī)組獨(dú)立變槳控制[J];水電能源科學(xué);2012年02期

10 魯效平;顧海港;林勇剛;李偉;劉宏偉;;基于獨(dú)立變槳距技術(shù)的風(fēng)力發(fā)電機(jī)組載荷控制研究[J];太陽(yáng)能學(xué)報(bào);2011年11期

相關(guān)博士學(xué)位論文 前3條

1 何偉;湍流風(fēng)場(chǎng)模擬與風(fēng)力發(fā)電機(jī)組載荷特性研究[D];華北電力大學(xué);2013年

2 劉姝;變速恒頻雙饋風(fēng)電機(jī)組最優(yōu)功率控制研究[D];沈陽(yáng)工業(yè)大學(xué);2013年

3 王磊;海上風(fēng)電機(jī)組系統(tǒng)動(dòng)力學(xué)建模及仿真分析研究[D];重慶大學(xué);2011年

相關(guān)碩士學(xué)位論文 前4條

1 羅超;3MW海上風(fēng)電機(jī)抗臺(tái)風(fēng)特性研究[D];集美大學(xué);2014年

2 雷航;水平軸風(fēng)電機(jī)組風(fēng)輪系統(tǒng)動(dòng)態(tài)載荷特性研究[D];華北電力大學(xué);2014年

3 張丹;風(fēng)電機(jī)組風(fēng)輪不平衡載荷的影響分析與控制[D];華北電力大學(xué);2014年

4 周潔;變速變槳距風(fēng)力發(fā)電機(jī)組的線性變參數(shù)增益調(diào)度控制[D];沈陽(yáng)工業(yè)大學(xué);2009年



本文編號(hào):2141480

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/2141480.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶330be***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com