基于深度自編碼網(wǎng)絡(luò)模型的風(fēng)電機(jī)組齒輪箱故障檢測(cè)
[Abstract]:In order to realize fault detection and analysis of fan gearbox, a depth self-coding network model of data acquisition and monitoring control (SCADA) data and vibration signal based on wind turbine gearbox is proposed. As a typical depth learning method, the model can acquire the rules and distribution features of data to form a more abstract high-level representation by learning the initial sample features layer by layer intelligently. Firstly, the parameters of the network are pretrained by a restricted Boltzmann machine and the parameters are optimized by the back-propagation algorithm, and the depth self-coding network model is established. Then, by encoding and decoding the state variables of the gearbox, the reconstruction error is calculated and used as the state check measurement of the gearbox. In order to detect the trend change of reconstruction error effectively, adaptive threshold is chosen as the decision criterion for fault detection of fan gearbox. Finally, the simulation analysis of the data recorded before and after the gearbox failure is carried out, and the results show that the depth self-coding network learning method is effective for the gearbox fault detection.
【作者單位】: 華北電力大學(xué)電氣與電子工程學(xué)院;中國(guó)科學(xué)院大學(xué)物理科學(xué)學(xué)院;國(guó)網(wǎng)冀北電力有限公司電力科學(xué)研究院;
【基金】:國(guó)家科技支撐計(jì)劃項(xiàng)目資助(2015BAA06B03)
【分類號(hào)】:TM315
【相似文獻(xiàn)】
相關(guān)期刊論文 前4條
1 蒙宣伊;龍辛;;風(fēng)機(jī)齒輪箱故障原因淺析[J];電力技術(shù);2010年08期
2 J.Hanna;C.Hatch;M.Kalb;卞文狀;;風(fēng)電機(jī)組振動(dòng)監(jiān)測(cè)系統(tǒng)對(duì)齒輪箱故障的檢測(cè)與診斷[J];風(fēng)能;2012年07期
3 顧煜炯;宋磊;徐天金;雷啟龍;;變工況條件下的風(fēng)電機(jī)組齒輪箱故障預(yù)警方法[J];中國(guó)機(jī)械工程;2014年10期
4 趙洪山;胡慶春;李志為;;基于統(tǒng)計(jì)過(guò)程控制的風(fēng)機(jī)齒輪箱故障預(yù)測(cè)[J];電力系統(tǒng)保護(hù)與控制;2012年13期
相關(guān)碩士學(xué)位論文 前6條
1 張欣欣;風(fēng)力發(fā)電機(jī)齒輪箱故障預(yù)警方法研究[D];燕山大學(xué);2015年
2 高志飛;風(fēng)電齒輪箱故障特征分析與診斷方法研究[D];上海電機(jī)學(xué)院;2016年
3 陳培;基于EEMD和希爾伯特平方解調(diào)技術(shù)的兆瓦級(jí)風(fēng)電齒輪箱故障診斷方法研究[D];浙江理工大學(xué);2016年
4 張偉鵬;風(fēng)力發(fā)電機(jī)組齒輪箱故障特征提取方法研究[D];華中科技大學(xué);2015年
5 馬玉峰;風(fēng)電機(jī)組齒輪箱故障趨勢(shì)預(yù)測(cè)方法研究[D];華北電力大學(xué);2013年
6 張燕;風(fēng)電機(jī)組齒輪箱故障特征提取技術(shù)的研究[D];華北電力大學(xué);2014年
,本文編號(hào):2129258
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/2129258.html