天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 科技論文 > 電氣論文 >

事故工況下AP1000核主泵惰轉(zhuǎn)模型優(yōu)化設(shè)計(jì)

發(fā)布時(shí)間:2018-07-14 12:10
【摘要】:核主泵是核電站冷卻回路系統(tǒng)中重要組成部分,也是實(shí)現(xiàn)國(guó)產(chǎn)化核電力關(guān)鍵設(shè)備之一。在發(fā)生斷電事故時(shí),由于機(jī)組轉(zhuǎn)動(dòng)慣量?jī)?chǔ)存的能量,系統(tǒng)核主泵會(huì)繼續(xù)惰轉(zhuǎn)運(yùn)行一段時(shí)間。如果惰轉(zhuǎn)過(guò)渡過(guò)程時(shí)間過(guò)于短暫,核主泵轉(zhuǎn)速快速下降到最低水平,使反應(yīng)堆產(chǎn)生的熱量不能及時(shí)排出,容易造成堆內(nèi)氫氣集中現(xiàn)象,嚴(yán)重時(shí)發(fā)生爆炸事故。因而,惰轉(zhuǎn)過(guò)渡過(guò)程過(guò)渡過(guò)程時(shí)間長(zhǎng)短是核主泵安全評(píng)價(jià)的重要內(nèi)容。本文通過(guò)理論分析、數(shù)值模擬和試驗(yàn)研究三者相結(jié)合的方法,對(duì)核主泵惰轉(zhuǎn)特性進(jìn)行研究,從水力性能和力矩性能兩方面優(yōu)化惰轉(zhuǎn)過(guò)渡過(guò)程,分析不同轉(zhuǎn)動(dòng)慣量和管路阻力對(duì)惰轉(zhuǎn)過(guò)渡過(guò)程的影響,探索在惰轉(zhuǎn)過(guò)渡過(guò)程中不同轉(zhuǎn)動(dòng)慣量對(duì)核主泵葉輪內(nèi)部流動(dòng)和動(dòng)力特性的影響,在此基礎(chǔ)上根據(jù)葉輪幾何參數(shù)建立惰轉(zhuǎn)過(guò)渡過(guò)程數(shù)學(xué)模型。主要研究?jī)?nèi)容和成果如下:1、根據(jù)核主泵機(jī)組轉(zhuǎn)動(dòng)慣量?jī)?chǔ)存的能量在惰轉(zhuǎn)過(guò)渡過(guò)程中的分配,提出以優(yōu)化核主泵的水力性能為目標(biāo),以此來(lái)減小惰轉(zhuǎn)過(guò)渡過(guò)程中葉輪中的能量損失,延長(zhǎng)惰轉(zhuǎn)時(shí)間;查閱大量文獻(xiàn),挑選葉輪進(jìn)出口直徑、葉輪出口傾斜角、葉片數(shù)、葉片包角、葉片出口寬度、葉片出口角及面積比八個(gè)幾何參數(shù)作為優(yōu)化參數(shù),進(jìn)行正交試驗(yàn)設(shè)計(jì)。2、利用Pro/E軟件和CFD軟件完成不同葉輪幾何參數(shù)組合模型的三維造型和外特性計(jì)算,通過(guò)對(duì)數(shù)值模擬計(jì)算結(jié)果進(jìn)行相關(guān)性分析、偏相關(guān)分析和通徑分析,得出影響水力性能的主要幾何參數(shù)及葉輪幾何參數(shù)對(duì)核主泵水力性能的直接和間接作用;結(jié)合偏相關(guān)分析和通徑分析的結(jié)果,以效率為目標(biāo)性能,選擇最優(yōu)葉輪幾何參數(shù)組合為:γ=23o、β_2=30o、φ=115o、Z=5、b_2=200mm、D_2=770mm、D_0=555mm、Y=1.002,通過(guò)對(duì)最優(yōu)結(jié)構(gòu)參數(shù)組合的葉輪進(jìn)行試驗(yàn)驗(yàn)證,相比原葉輪惰轉(zhuǎn)時(shí)間有所延長(zhǎng)。3、通過(guò)搭建核主泵水力樣機(jī)惰轉(zhuǎn)試驗(yàn)臺(tái),分析轉(zhuǎn)動(dòng)慣量和管阻對(duì)惰轉(zhuǎn)過(guò)渡過(guò)程的影響。通過(guò)試驗(yàn)結(jié)果可知:在惰轉(zhuǎn)過(guò)渡過(guò)程中,對(duì)揚(yáng)程變化梯度影響較大,對(duì)流量變化梯度較小,轉(zhuǎn)速變化梯度在兩者之間;且管阻和轉(zhuǎn)動(dòng)慣量對(duì)惰轉(zhuǎn)過(guò)渡過(guò)程中有著不同的影響:管阻對(duì)惰轉(zhuǎn)過(guò)渡過(guò)程中轉(zhuǎn)速影響不大,對(duì)流量和揚(yáng)程有較大的影響;而轉(zhuǎn)動(dòng)慣量對(duì)惰轉(zhuǎn)過(guò)渡過(guò)程中的轉(zhuǎn)速、流量和揚(yáng)程都有較大的影響。4、為了研究在惰轉(zhuǎn)過(guò)渡過(guò)程中不同轉(zhuǎn)動(dòng)慣量對(duì)葉輪水力特性和動(dòng)力特性的影響,利用MATLAB軟件將不同轉(zhuǎn)動(dòng)慣量對(duì)應(yīng)的轉(zhuǎn)速和流量與時(shí)間的變化曲線擬合成對(duì)應(yīng)公式作為CFX計(jì)算邊界條件,進(jìn)行惰轉(zhuǎn)過(guò)渡過(guò)程非定常計(jì)算,通過(guò)計(jì)算結(jié)果可知:不同轉(zhuǎn)動(dòng)慣量對(duì)應(yīng)葉輪水力特性和動(dòng)力特性有較大的影響,轉(zhuǎn)動(dòng)慣量越大,對(duì)應(yīng)葉輪水力特性和動(dòng)力特性下降梯度越小,轉(zhuǎn)動(dòng)慣量越小,對(duì)應(yīng)葉輪水力特性和動(dòng)力特性下降梯度越大。5、結(jié)合正交試驗(yàn)和CFX數(shù)值模擬軟件計(jì)算不同葉輪幾何參數(shù)組合模型對(duì)應(yīng)的六個(gè)惰轉(zhuǎn)工況下的力矩系數(shù)結(jié)果,利用多元逐步分析法計(jì)算不同葉輪幾何參數(shù)組合與力矩系數(shù)之間的關(guān)系,得到力矩系數(shù)與葉輪幾何參數(shù)之間的回歸方程及最優(yōu)葉輪幾何參數(shù)組合;運(yùn)用主成分分析法建立惰轉(zhuǎn)過(guò)渡過(guò)程中葉輪幾何參數(shù)、轉(zhuǎn)動(dòng)慣量、轉(zhuǎn)速和時(shí)間四者之間數(shù)學(xué)模型;通過(guò)Flowmaster搭建核主泵惰轉(zhuǎn)模擬試驗(yàn)臺(tái)來(lái)驗(yàn)證數(shù)學(xué)模型的正確性,結(jié)果表明:數(shù)學(xué)模型計(jì)算的惰轉(zhuǎn)過(guò)渡過(guò)程中轉(zhuǎn)速變化曲線和Flowmaster核主泵惰轉(zhuǎn)試驗(yàn)臺(tái)模擬的轉(zhuǎn)速變化曲線之間的區(qū)別很小,說(shuō)明數(shù)學(xué)計(jì)算模型對(duì)不同的葉輪幾何參數(shù)的核主泵有很好的預(yù)測(cè)效果。6、通過(guò)計(jì)算水力優(yōu)化模型和力矩性能優(yōu)化模型的外特性和惰轉(zhuǎn)特性,計(jì)算結(jié)果表明:水力優(yōu)化模型通過(guò)提高設(shè)計(jì)點(diǎn)的水力性能來(lái)整體減小惰轉(zhuǎn)過(guò)渡過(guò)程能量損失,提高惰轉(zhuǎn)特性,而力矩性能優(yōu)化模型將核主泵的高效區(qū)向小流量區(qū)域偏轉(zhuǎn)來(lái)提高惰轉(zhuǎn)特性;對(duì)比兩者可知:力矩性能優(yōu)化模型大于水力優(yōu)化模型對(duì)惰轉(zhuǎn)特性的提高幅度。
[Abstract]:The nuclear main pump is an important part of the cooling circuit system of the nuclear power plant. It is also one of the key equipment to realize the domestic nuclear power. In the event of power failure, the system nuclear main pump will continue to run lazly for a period of time because of the energy stored in the inertia of the unit. If the time of the transition process is too short, the speed of the nuclear main pump will fall quickly to the speed of the nuclear power plant. At the lowest level, the heat of the reactor can not be discharged in time, it is easy to cause the concentration of hydrogen in the reactor, and the explosion accident occurs seriously. Therefore, the time of the transition process of the inert transition process is an important content of the safety evaluation of the nuclear main pump. Through theoretical analysis, numerical simulation and experimental research, the three methods are combined to the nuclear owner. The characteristic of pump inert is studied. The effect of different inertia and pipe resistance on the inert transition process is analyzed from two aspects of hydraulic performance and torque performance. The influence of different rotational inertia on the internal flow and dynamic characteristics of the main pump impeller is explored in the process of inert transition, based on the geometry of the impeller. The main research contents and results are as follows: 1, according to the distribution of the energy stored in the inertia of the nuclear pump unit in the process of the inert transition, the aim is to optimize the hydraulic performance of the nuclear main pump, so as to reduce the energy loss in the impeller and prolong the idle time in the process of the inert transition. The diameter of the impellers, the inlet and outlet diameter of the impeller, the inclination angle of the impeller outlet, the number of blades, the blade angle, the blade outlet width, the exit angle and the area of the blade are compared with eight geometric parameters, and the orthogonal test is designed for.2. The three-dimensional modeling and external characteristic calculation of the geometric parameters combination model of different blade wheel are completed by Pro/E software and CFD software. Through correlation analysis, partial correlation analysis and path analysis, the main geometric parameters affecting the hydraulic performance and the direct and indirect effects of the impeller geometric parameters on the hydraulic performance of the nuclear main pump are obtained, and the optimal impeller geometric parameters are selected by combining the results of partial correlation analysis and path analysis. The number of combinations are: gamma =23o, beta _2=30o, Phi =115o, Z=5, b_2=200mm, D_2=770mm, D_0=555mm, Y=1.002. By testing the impeller of the optimal structural parameters, compared with the original impeller inert time, the effect of the inertia and pipe resistance on the inert transition process is analyzed. The results show that in the process of transition, the gradient of the head change has a larger influence, the gradient of the flow change is smaller, the speed change gradient is between the two, and the tube resistance and the rotational inertia have different effects on the inert transition process: the tube resistance has little influence on the speed during the inert transition, and has a great influence on the flow and lift. In order to study the influence of different rotational inertia on the hydraulic and dynamic characteristics of the impeller during the inert transition process, the dynamic inertia has a great influence on the speed, flow and head in the process of inert transition. In order to study the influence of different rotational inertia on the hydraulic and dynamic characteristics of the impeller during the inert transition process, the corresponding formula of the rotational speed, the flow rate and the time curve corresponding to the different rotational inertia is prepared by using the MATLAB software as CFX. The boundary conditions are calculated, and the unsteady calculation of the inert transition process is carried out. Through the calculation results, it is found that the different rotational inertia has a great influence on the hydraulic and dynamic characteristics of the impeller. The larger the moment of inertia, the smaller the gradient of the hydraulic and dynamic characteristics of the impeller, the smaller the moment of inertia, and the hydraulic and dynamic characteristics of the impeller. The greater the gradient of the gradient is.5, the result of the moment coefficient is calculated by combining the orthogonal test and the CFX numerical simulation software. The relationship between the geometric parameters combination of different impeller and the moment coefficient is calculated by the multivariate stepwise analysis method, and the back between the moment coefficient and the geometric parameters of the impeller is obtained. The combination of the regression equation and the optimal impeller geometric parameters; using the principal component analysis method to establish the mathematical model between the geometric parameters of the impeller, the rotational inertia, the rotational speed and the time in the process of the inert transition, and to set up a nuclear main pump inert simulation test rig by Flowmaster to verify the correctness of the mathematical model, and the results show that the inert transition of the mathematical model is calculated. The difference between the speed change curve of the process and the change curve of the Flowmaster core main pump is very small. It shows that the mathematical model has a good prediction effect on the nuclear main pump with different impeller geometric parameters. The calculation of the external and inert characteristics of the hydraulic optimization model and the torque performance optimization model is calculated by calculating the hydraulic optimization model and the torque performance optimization model. The results show that by improving the hydraulic performance of the design point, the hydraulic optimization model reduces the energy loss of the inert transition process and improves the inert transfer characteristic, while the torque performance optimization model turns the high efficient area of the nuclear main pump to the small flow area to improve the inert rotation characteristic. The increasing amplitude of the inert property.
【學(xué)位授予單位】:江蘇大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TM623

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 唐X;符偉;陳興江;王成偉;宋小伍;孫琪;王寧;;核主泵惰轉(zhuǎn)飛輪試驗(yàn)臺(tái)架的研制及應(yīng)用[J];水泵技術(shù);2017年01期

2 王立來(lái);;AP1000主泵飛輪及水潤(rùn)滑軸承研究[J];核動(dòng)力工程;2017年01期

3 羅麗;;中國(guó)發(fā)展核電的必要性及面臨的挑戰(zhàn)[J];城市地理;2016年16期

4 王燕君;李文紅;鄧君;高玲;;切爾諾貝利和福島核事故的今昔對(duì)比及引發(fā)世人的深思[J];中國(guó)輻射衛(wèi)生;2016年04期

5 鄒才能;趙群;張國(guó)生;熊波;;能源革命:從化石能源到新能源[J];天然氣工業(yè);2016年01期

6 付強(qiáng);曹梁;朱榮生;習(xí)毅;王秀禮;;CAP1400核主泵導(dǎo)葉和葉輪匹配數(shù)研究[J];原子能科學(xué)技術(shù);2016年01期

7 劉立祥;;線性回歸模型中自變量的選擇與逐步回歸方法[J];統(tǒng)計(jì)與決策;2015年21期

8 江偉;朱相源;李國(guó)君;劉鵬飛;;導(dǎo)葉與隔舌相對(duì)位置對(duì)離心泵葉輪徑向力的影響[J];農(nóng)業(yè)機(jī)械學(xué)報(bào);2016年02期

9 姜茂華;鄒志超;王鵬飛;阮曉東;;基于額定參數(shù)的核主泵惰轉(zhuǎn)工況計(jì)算模型[J];原子能科學(xué)技術(shù);2014年08期

10 王蕾;魏后凱;;中國(guó)城鎮(zhèn)化對(duì)能源消費(fèi)影響的實(shí)證研究[J];資源科學(xué);2014年06期

相關(guān)碩士學(xué)位論文 前3條

1 邵昌;超低比轉(zhuǎn)速離心泵瞬態(tài)過(guò)程特性研究[D];江蘇大學(xué);2016年

2 徐一鳴;斷電事故下核主泵內(nèi)流場(chǎng)數(shù)值模擬[D];大連理工大學(xué);2011年

3 秦杰;核主泵過(guò)流部件水力設(shè)計(jì)與內(nèi)部流場(chǎng)數(shù)值模擬[D];大連理工大學(xué);2010年

,

本文編號(hào):2121600

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/2121600.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶85dd4***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com
亚洲成人精品免费在线观看 | 日本少妇三级三级三级| 好东西一起分享老鸭窝| 97人妻人人揉人人躁人人| 国产国产精品精品在线| 日韩精品视频一二三区| 久久三级国外久久久三级| 熟女乱一区二区三区丝袜| 亚洲欧美黑人一区二区| 男人大臿蕉香蕉大视频| 又黄又硬又爽又色的视频 | 欧美六区视频在线观看| 午夜直播免费福利平台| 国产成人免费激情视频| 欧美大胆美女a级视频| 蜜桃传媒视频麻豆第一区| 国产福利在线播放麻豆| 国产欧美日本在线播放| 国产欧美日韩一级小黄片| 丰满熟女少妇一区二区三区| 人妻巨大乳一二三区麻豆| 国产亚洲精品岁国产微拍精品| 91欧美日韩精品在线| 久久偷拍视频免费观看| 欧美日韩欧美国产另类| 亚洲熟女精品一区二区成人| 国产精品亚洲精品亚洲| 国产精品久久香蕉国产线| 中文字幕亚洲精品乱码加勒比| 亚洲一区二区福利在线| 午夜福利视频日本一区| 中文字幕在线区中文色| 欧美精品一区二区水蜜桃| 高清不卡一卡二卡区在线| 中字幕一区二区三区久久蜜桃 | 青青久久亚洲婷婷中文网| 亚洲伦理中文字幕在线观看| 日本午夜乱色视频在线观看| 中文字幕亚洲精品在线播放| 日本少妇中文字幕不卡视频| 亚洲欧美国产精品一区二区|