天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 電氣論文 >

光伏發(fā)電系統(tǒng)的功率預(yù)測與接入影響研究

發(fā)布時間:2018-07-11 15:04

  本文選題:光伏發(fā)電 + 神經(jīng)網(wǎng)絡(luò); 參考:《昆明理工大學(xué)》2017年碩士論文


【摘要】:隨著化石燃料導(dǎo)致的環(huán)境問題與能源緊缺問題的出現(xiàn),太陽能光伏發(fā)電系統(tǒng)在世界各國的能源結(jié)構(gòu)的轉(zhuǎn)變中已成為重要部分。但是,分布式光伏發(fā)電系統(tǒng)對于外界環(huán)境的依賴性較高,造成了其輸出功率隨著環(huán)境因素的變化而變化,其接入主電網(wǎng)后將對電網(wǎng)造成不確定性影響,且分布式光伏發(fā)電系統(tǒng)的滲透率越高,電力系統(tǒng)的復(fù)雜性與風(fēng)險也越大。因此,分布式光伏發(fā)電系統(tǒng)的功率預(yù)測與并網(wǎng)后的配網(wǎng)潮流計算,有助于調(diào)度部門提前做好調(diào)度計劃和風(fēng)險規(guī)避,以提高電力系統(tǒng)的安全性。本文的具體工作如下:(1)將太陽輻射強度、環(huán)境溫度、天氣類別作為光伏系統(tǒng)輸出不穩(wěn)定的主要影響因素,分別基于動量自適應(yīng)學(xué)習(xí)速率法的BP神經(jīng)網(wǎng)絡(luò)、RBF神經(jīng)網(wǎng)絡(luò)以及GRNN神經(jīng)網(wǎng)絡(luò)建立了光伏發(fā)電系統(tǒng)輸出功率的短期預(yù)測模型。(2)提出了一種基于決策論極大極小準(zhǔn)則的組合預(yù)測模型,該組合預(yù)測模型由BP神經(jīng)網(wǎng)絡(luò)、RBF神經(jīng)網(wǎng)絡(luò)、GRNN神經(jīng)網(wǎng)絡(luò)組成,對光伏發(fā)電系統(tǒng)輸出功率進(jìn)行預(yù)測,探索提高輸出功率的預(yù)測精度。(3)提出了一種改進(jìn)型的前推回代法,設(shè)計不同的接入方案,利用光伏系統(tǒng)輸出功率的預(yù)測值進(jìn)行仿真實驗,通過前推回代方法計算了含分布式的配網(wǎng)潮流,研究了分布式光伏發(fā)電系統(tǒng)接入電網(wǎng)后對配電網(wǎng)絡(luò)的影響。研究結(jié)果表明:將太陽輻射強度、環(huán)境溫度、天氣類別作為影響光伏發(fā)電系統(tǒng)輸出功率的主要因素能夠較好地適用于人工神經(jīng)網(wǎng)絡(luò)建立的預(yù)測模型,在三種單一預(yù)測模型中,GRNN神經(jīng)網(wǎng)絡(luò)的輸出功率預(yù)測精度較高;而基于決策論極大極小準(zhǔn)則的組合預(yù)測模型的能夠進(jìn)一步提高預(yù)測精度;分布式光伏發(fā)電系統(tǒng)接入電網(wǎng)后對配電網(wǎng)絡(luò)的影響為:分布式電源的接入提高了饋線電壓的分布,且都能在一定程度上減少系統(tǒng)的網(wǎng)損。
[Abstract]:With the emergence of environmental problems and energy shortages caused by fossil fuels, solar photovoltaic power generation systems have become an important part in the transformation of energy structure in the world. However, the distributed photovoltaic power generation system is highly dependent on the external environment, which causes its output power to change with the change of environmental factors. And the higher the permeability of distributed photovoltaic generation system, the greater the complexity and risk of power system. Therefore, the power prediction of the distributed photovoltaic power generation system and the distribution power flow calculation after the grid connection can help the dispatching department to prepare the dispatch plan and avoid the risk in advance, so as to improve the security of the power system. The main work of this paper is as follows: (1) the solar radiation intensity, ambient temperature and weather type are the main factors that affect the output instability of photovoltaic system. BP neural network based on momentum adaptive learning rate method and GRNN neural network are used to establish short-term prediction models of output power of photovoltaic power generation system. (2) A combined prediction model based on decision theory minimax criterion is proposed. The combined prediction model is composed of BP neural network and RBF neural network and GRNN neural network. The output power of photovoltaic power generation system is predicted, and the prediction accuracy of output power is explored. (3) an improved forward push-back method is proposed. Different access schemes are designed, and the simulation experiments are carried out by using the predicted output power of photovoltaic system. The distribution power flow with distributed distribution network is calculated by the method of forward push back substitution. The influence of distributed photovoltaic system on distribution network is studied. The results show that solar radiation intensity, ambient temperature and weather type are the main factors affecting the output power of photovoltaic power generation system, which can be applied to the prediction model established by artificial neural network. Among the three single prediction models, the output power prediction accuracy of GRNN neural network is higher, while the combined prediction model based on the decision theory minimax criterion can further improve the prediction accuracy. The influence of distributed photovoltaic system on distribution network is as follows: the distribution of feeder voltage is improved by the access of distributed generation, and the network loss can be reduced to a certain extent.
【學(xué)位授予單位】:昆明理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TM615

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 田園園;廖清芬;劉滌塵;朱振山;彭思成;徐雨田;;面向綜合能源供給側(cè)改革的城市配網(wǎng)規(guī)劃方法[J];電網(wǎng)技術(shù);2016年10期

2 耿慶申;盧玉;樊海榮;張鵬;;特高壓和超高壓交流輸電系統(tǒng)運行損耗比較分析[J];電力系統(tǒng)保護與控制;2016年16期

3 陽霜;羅滇生;何洪英;陽經(jīng)偉;胡時雨;;基于EMD-LSSVM的光伏發(fā)電系統(tǒng)功率預(yù)測方法研究[J];太陽能學(xué)報;2016年06期

4 李安壽;陳琦;王子才;李鐵才;;光伏發(fā)電系統(tǒng)功率預(yù)測方法綜述[J];電氣傳動;2016年06期

5 謝東;劉慧;張籍;張世榮;;小規(guī)模分布式光伏發(fā)電系統(tǒng)用戶側(cè)經(jīng)濟性分析[J];可再生能源;2015年05期

6 陳旭;楊雨瑤;張勇軍;葉琳浩;;光伏光照概率性對配電網(wǎng)電壓的影響[J];華南理工大學(xué)學(xué)報(自然科學(xué)版);2015年04期

7 王子文;徐維昌;李明濱;慕松;王燕昌;;離網(wǎng)型光伏發(fā)電系統(tǒng)自動切換裝置設(shè)計[J];自動化儀表;2015年02期

8 魯飛;劉小魚;孫良成;王峰;劉樹峰;李慧;;CIGS薄膜太陽能光伏產(chǎn)業(yè)發(fā)展現(xiàn)狀[J];材料導(dǎo)報;2014年19期

9 包廣清;楊國金;楊勇;常勇;;基于改進(jìn)遺傳算法的光伏發(fā)電并網(wǎng)優(yōu)化配置[J];電力建設(shè);2014年06期

10 趙守仁;黃志鵬;孫雷;孫朋超;張傳軍;鄔云驊;曹鴻;黃志明;王善力;褚君浩;;基于雙結(jié)模型非理想太陽能電池伏安特性參數(shù)數(shù)值分析[J];紅外與毫米波學(xué)報;2013年05期

相關(guān)碩士學(xué)位論文 前4條

1 王清龍;光伏發(fā)電系統(tǒng)發(fā)電功率預(yù)測研究[D];天津大學(xué);2014年

2 牛家洋;基于神經(jīng)網(wǎng)絡(luò)的非線性系統(tǒng)時間序列的預(yù)測方法研究[D];山東師范大學(xué);2013年

3 程站立;計及分布式電源的配電網(wǎng)潮流計算及其無功優(yōu)化研究[D];西南交通大學(xué);2011年

4 蘇美娟;徑向基函數(shù)神經(jīng)網(wǎng)絡(luò)學(xué)習(xí)算法研究[D];蘇州大學(xué);2007年

,

本文編號:2115593

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/2115593.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶01f68***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com