超級(jí)電容電壓均衡系統(tǒng)的研究
發(fā)布時(shí)間:2018-07-10 09:38
本文選題:超級(jí)電容 + DC/DC ; 參考:《哈爾濱工業(yè)大學(xué)》2017年碩士論文
【摘要】:超級(jí)電容作為新型“綠色”儲(chǔ)能元件因其比功率高、充電速度快以及循環(huán)使用壽命長(zhǎng)等特點(diǎn),在儲(chǔ)能領(lǐng)域受到了的普遍關(guān)注。然而,由于制造工藝問(wèn)題,超級(jí)電容單體參數(shù)會(huì)出現(xiàn)不一致的現(xiàn)象。電容單體參數(shù)的不一致會(huì)導(dǎo)致其在串聯(lián)使用時(shí),出現(xiàn)電壓不一致的問(wèn)題。性縮短其使用壽命,增加故障率,制約了其大規(guī)模實(shí)際應(yīng)用。因此本文通過(guò)對(duì)超級(jí)電容均衡策略和拓?fù)浣Y(jié)構(gòu)的研究,設(shè)計(jì)了一款超級(jí)電容電壓均衡系統(tǒng)。本文設(shè)計(jì)的超級(jí)電容電壓均衡系統(tǒng)采用了電壓一致性策略和DC/DC動(dòng)態(tài)均衡結(jié)構(gòu)。其具體均衡過(guò)程是將儲(chǔ)能系統(tǒng)整體能量抽取出來(lái),通過(guò)一定均衡控制策略,將能量轉(zhuǎn)移到電壓低于平均值的超級(jí)電容單體中,以實(shí)現(xiàn)能量在超級(jí)電容單體間的均衡。為了提高系統(tǒng)的工作效率和可靠性,拆分均衡系統(tǒng)中的關(guān)鍵點(diǎn)深入研究。其關(guān)鍵模塊分為:DC/DC功率變換器、模塊化DC/DC電源和均衡控制器三部分。首先,對(duì)DC/DC功率變換器模塊進(jìn)行拓?fù)浣Y(jié)構(gòu)設(shè)計(jì),需要將儲(chǔ)能系統(tǒng)整體電壓轉(zhuǎn)化成模塊電壓,為模塊化DC/DC電源和均衡控制器供電,以實(shí)現(xiàn)能量轉(zhuǎn)移的目的。為了使電路能夠大功率、高頻率運(yùn)行,本文設(shè)計(jì)的拓?fù)浣Y(jié)構(gòu)為基于新型開(kāi)關(guān)管Si C MOSFET的隔離型移相全橋變換器。經(jīng)電路仿真及實(shí)驗(yàn)驗(yàn)證,證明了結(jié)構(gòu)設(shè)計(jì)的合理性。其次,對(duì)模塊化DC/DC電源電路進(jìn)行了創(chuàng)新性設(shè)計(jì)。這一電路需要將模塊電壓轉(zhuǎn)化為超級(jí)電容單體充電電壓,為電壓低于平均值的電容充電。為了減小充電電路損耗,提高效率,本文分析了傳統(tǒng)有源鉗位正激變換電路在不同階段開(kāi)關(guān)管及續(xù)流二極管的工作狀態(tài),在此基礎(chǔ)上設(shè)計(jì)了一種新型同步整流有源鉗位正激變換器。通過(guò)減小輸出電路續(xù)流二極管的導(dǎo)通時(shí)間,降低了二極管的導(dǎo)通損耗,提高了效率。通過(guò)對(duì)新型電路的仿真和實(shí)驗(yàn)驗(yàn)證,證明了其功能的合理性。然后,對(duì)均衡控制器進(jìn)行硬件電路和軟件程序設(shè)計(jì),以實(shí)現(xiàn)電壓一致性均衡策略,通過(guò)采集超級(jí)電容單體電壓,控制模塊化DC/DC電源的開(kāi)啟或關(guān)斷。為了減少超級(jí)電容的充放電次數(shù),增加超級(jí)電容的使用壽命,提高系統(tǒng)的可靠性,本文在傳統(tǒng)電壓一致性策略的基礎(chǔ)上進(jìn)行了改進(jìn)。并對(duì)超級(jí)電容儲(chǔ)能系統(tǒng)進(jìn)行了參數(shù)識(shí)別程序設(shè)計(jì),以實(shí)現(xiàn)對(duì)超級(jí)電容單體狀態(tài)的實(shí)時(shí)監(jiān)測(cè)。最后,搭建一個(gè)由64個(gè)儲(chǔ)能模塊,每個(gè)模塊8個(gè)超級(jí)電容單體組成的儲(chǔ)能系統(tǒng)作為實(shí)驗(yàn)平臺(tái),對(duì)超級(jí)電容電壓均衡系統(tǒng)進(jìn)行實(shí)驗(yàn)。通過(guò)對(duì)超級(jí)電容電壓均衡系統(tǒng)的儲(chǔ)能部分的電容單體電壓進(jìn)行電壓監(jiān)測(cè)記錄后,得出的實(shí)驗(yàn)結(jié)果可以看出,經(jīng)超級(jí)電容電壓均衡系統(tǒng)均衡后的超級(jí)電容單體電壓達(dá)到了較好的一致性。
[Abstract]:As a new type of "green" energy storage element, super capacitor has attracted much attention in the field of energy storage because of its high specific power, fast charging speed and long cycle life. However, due to manufacturing process problems, supercapacitor cell parameters will be inconsistent. The inconsistency of capacitance parameters will lead to the problem of voltage inconsistency when it is used in series. It can shorten its service life, increase the failure rate, and restrict its large-scale practical application. Therefore, a super capacitor voltage equalization system is designed by studying the strategy and topology of super capacitor equalization. The super capacitor voltage equalization system designed in this paper adopts voltage consistency strategy and DC- / DC dynamic equalization structure. The specific equalization process is to extract the whole energy from the energy storage system and transfer the energy to the super capacitor cell with a voltage lower than the average through a certain equalization control strategy to realize the energy equalization between the super capacitor cells. In order to improve the efficiency and reliability of the system, the key points in the split equalization system are deeply studied. The key modules are divided into three parts: the DC / DC power converter, the DC / DC power supply and the equalization controller. Firstly, the topology of DC / DC converter module is designed. It is necessary to convert the whole voltage of energy storage system into module voltage, and supply power to the modularized DC / DC power supply and equalization controller to achieve the purpose of energy transfer. In order to make the circuit run at high power and high frequency, the topology designed in this paper is an isolated phase-shifted full-bridge converter based on a novel switching transistor (sic) MOSFET. The rationality of the structure design is proved by circuit simulation and experiment. Secondly, the modularized DC / DC power supply circuit is innovatively designed. This circuit needs to convert the module voltage to the supercapacitor cell charge voltage and charge the capacitor with a voltage lower than the average. In order to reduce the loss of the charging circuit and improve the efficiency, this paper analyzes the operating state of the traditional active clamp forward conversion circuit in different stages of the switch tube and the continuous current diode. On this basis, a novel synchronous rectifier active clamp forward converter is designed. By reducing the turn-on time of the output circuit, the on-loss of the diode is reduced and the efficiency is improved. Through the simulation and experimental verification of the new circuit, the rationality of its function is proved. Then, the hardware circuit and software program of the equalization controller are designed to realize the voltage consistency equalization strategy, and the modularized DC / DC power supply is turned on or off by collecting the supercapacitor cell voltage. In order to reduce the charge and discharge times of the super capacitor, increase the service life of the super capacitor and improve the reliability of the system, this paper improves the conventional voltage consistency strategy. The parameter identification program of super capacitor energy storage system is designed to realize the real-time monitoring of super capacitor cell state. Finally, an energy storage system consisting of 64 energy storage modules and 8 super capacitor units per module is built as an experimental platform to test the super capacitor voltage equalization system. Through the voltage monitoring and recording of the capacitor cell voltage in the storage part of the super capacitor voltage equalization system, the experimental results can be seen. The supercapacitor cell voltage after the equalization of super capacitor voltage equalization system achieves good consistency.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TM46;TM53
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 胡景泰;吳婷;梁海泉;陳宇飛;;超級(jí)電容器電壓均衡電路研究[J];電器與能效管理技術(shù);2016年05期
2 李桂丹;彭亮;李華;邵鵬;;串聯(lián)超級(jí)電容組的能效均衡優(yōu)化控制[J];計(jì)算機(jī)仿真;2015年12期
3 梁美;鄭瓊林;可,
本文編號(hào):2112971
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/2112971.html
最近更新
教材專(zhuān)著