綜合小區(qū)交流微網(wǎng)運行控制及優(yōu)化配置
本文選題:配置優(yōu)化 + 運行優(yōu)化 ; 參考:《沈陽工業(yè)大學》2017年碩士論文
【摘要】:為了緩解能源危機及滿足新能源的需求,由多種分布式電源(DG)、負荷、儲能單元和控制裝置等構(gòu)成的微電網(wǎng)系統(tǒng)得到了各國的廣泛重視。然而,微網(wǎng)系統(tǒng)中的光伏電池受外界自然因素的影響,其輸出能量具有間歇性和隨機性的缺點,從而會影響到系統(tǒng)的供電穩(wěn)定性和可靠性。本文以微網(wǎng)穩(wěn)定運行為切入點,在Matlab/Simulink仿真環(huán)境中構(gòu)建了光伏電池及其最大功率跟蹤控制MPPT、蓄電池、燃氣輪機以及PQ,V/f兩種控制策略的仿真模型;分析了PQ解耦原理及V/f雙閉環(huán)控制結(jié)構(gòu),通過算例驗證了模型的有效性和正確性。為了利用微網(wǎng)系統(tǒng)中燃氣輪機發(fā)出的余熱,同時克服不可控微源發(fā)電間歇性、隨機性導致的能源浪費,提高能量利用率及微電網(wǎng)對大電網(wǎng)削峰填谷的作用,在交流微網(wǎng)架構(gòu)下利用分布式光伏、小型燃氣輪機、余熱鍋爐、溴化鋰吸收裝置、電制冷及電制熱調(diào)峰設備、蓄水池和蓄電池建立了多聯(lián)供微電網(wǎng)。該系統(tǒng)具有多能量耦合,各微源工作特性不同的特點,如何根據(jù)其氣候、資源條件以及負荷特性進行各個設備容量的優(yōu)化配置,從而保證系統(tǒng)功率的平衡,不僅關系到系統(tǒng)的經(jīng)濟性和合理性,而且在很大程度上決定了整個系統(tǒng)的供能可靠性。本文以供能可靠性為前提,系統(tǒng)凈收入最高為優(yōu)化目標建立以系統(tǒng)設備容量為優(yōu)化變量的配置優(yōu)化和以設備出力為優(yōu)化變量的運行優(yōu)化模型,采用遺傳算法和線性規(guī)劃分別對微源配置和運行進行優(yōu)化設計。優(yōu)化配置時通過遺傳算法中的GGAP代溝,保留當代最優(yōu)個體。分析了運行優(yōu)化的約束條件,為了淘汰不滿足供能要求的個體,加快整體的收斂速度,在運行優(yōu)化目標函數(shù)中引入懲罰項;最后以綜合小區(qū)為基礎對優(yōu)化方案進行驗證,分析了小區(qū)負荷特性,氣候參數(shù),能源價格及政府補貼等因素。仿真結(jié)果表明,在現(xiàn)有價格體制下,微電網(wǎng)在商業(yè)居民綜合小區(qū)條件下具有經(jīng)濟性,具有推廣價值。
[Abstract]:In order to alleviate the energy crisis and meet the needs of new energy, the microgrid system, which consists of a variety of distributed power generation (DG), load, energy storage unit and control device, has been paid more and more attention by many countries. However, photovoltaic cells in microgrid systems are affected by natural factors, and their output energy is intermittent and random, which will affect the power supply stability and reliability of the system. In this paper, the simulation model of photovoltaic cell and its MPPTT, battery, gas turbine and PQV / f control strategy is constructed in Matlab / Simulink simulation environment. The PQ decoupling principle and the V / f double closed loop control structure are analyzed. The validity and correctness of the model are verified by an example. In order to make use of the residual heat from gas turbine in the microgrid system, and to overcome the energy waste caused by the intermittent and randomness of uncontrollable microsource generation, and to improve the energy utilization rate and the effect of microgrid on cutting peak and filling valley in large power grid, In the AC microgrid system, a multi-power microgrid was established using distributed photovoltaic, small gas turbine, waste heat boiler, lithium bromide absorber, electric refrigeration and electric heating peak-shaving equipment, storage tank and battery. The system has the characteristics of multi-energy coupling and different operating characteristics of each micro-source. How to optimize the configuration of each equipment capacity according to its climate, resource conditions and load characteristics, so as to ensure the balance of system power. It not only relates to the economy and rationality of the system, but also determines the reliability of the whole system to a great extent. Based on the reliability of energy supply, the optimization model of the system with the maximum net income as the optimization objective and the equipment capacity as the optimization variable and the equipment output as the optimization variable is established in this paper. Genetic algorithm and linear programming are used to optimize the configuration and operation of microsource. When optimizing configuration, the gap generation gap in genetic algorithm is used to retain the contemporary optimal individual. The constraint conditions of operation optimization are analyzed. In order to eliminate the individuals who do not meet the requirements of energy supply, and to speed up the overall convergence rate, the penalty term is introduced into the operation optimization objective function. Finally, the optimization scheme is verified on the basis of comprehensive community. Some factors, such as load characteristics, climate parameters, energy price and government subsidy, are analyzed. The simulation results show that, under the existing price system, the microgrid is economical under the condition of commercial residents' comprehensive residential area, and it is worth popularizing.
【學位授予單位】:沈陽工業(yè)大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TM727
【參考文獻】
相關期刊論文 前10條
1 馬吉杉;;線性規(guī)劃問題最優(yōu)解之探究[J];科技風;2016年17期
2 徐少華;李建林;;光儲微網(wǎng)系統(tǒng)并網(wǎng)/孤島運行控制策略[J];中國電機工程學報;2013年34期
3 陳潔;楊秀;朱蘭;張美霞;李振坤;;微網(wǎng)多目標經(jīng)濟調(diào)度優(yōu)化[J];中國電機工程學報;2013年19期
4 陳健;王成山;趙波;張雪松;葛曉慧;;考慮不同控制策略的獨立型微電網(wǎng)優(yōu)化配置[J];電力系統(tǒng)自動化;2013年11期
5 顧偉;吳志;王銳;;考慮污染氣體排放的熱電聯(lián)供型微電網(wǎng)多目標運行優(yōu)化[J];電力系統(tǒng)自動化;2012年14期
6 王銳;顧偉;吳志;;含可再生能源的熱電聯(lián)供型微網(wǎng)經(jīng)濟運行優(yōu)化[J];電力系統(tǒng)自動化;2011年08期
7 陶瓊;吳在軍;程軍照;凡勇;;含光伏陣列及燃料電池的微網(wǎng)建模與仿真[J];電力系統(tǒng)自動化;2010年01期
8 李鵬;張玲;王偉;楊希磊;趙義術;;微網(wǎng)技術應用與分析[J];電力系統(tǒng)自動化;2009年20期
9 王新剛;艾芊;徐偉華;韓鵬;;含分布式發(fā)電的微電網(wǎng)能量管理多目標優(yōu)化[J];電力系統(tǒng)保護與控制;2009年20期
10 左文霞;李澍森;吳夕科;程軍照;;微電網(wǎng)技術及發(fā)展概況[J];中國電力;2009年07期
相關博士學位論文 前3條
1 胡義華;小型光伏系統(tǒng)及其關鍵問題研究[D];中國礦業(yè)大學;2011年
2 張穎媛;微網(wǎng)系統(tǒng)的運行優(yōu)化與能量管理研究[D];合肥工業(yè)大學;2011年
3 劉飛;三相并網(wǎng)光伏發(fā)電系統(tǒng)的運行控制策略[D];華中科技大學;2008年
相關碩士學位論文 前4條
1 曹增杰;風光蓄交流微電網(wǎng)的控制與仿真研究[D];太原理工大學;2012年
2 楊文杰;光伏發(fā)電并網(wǎng)與微網(wǎng)運行控制仿真研究[D];西南交通大學;2010年
3 時智勇;三相單級式光伏并網(wǎng)發(fā)電系統(tǒng)綜合控制與應用[D];北京交通大學;2009年
4 吳子平;基于微型燃氣輪機發(fā)電系統(tǒng)的微網(wǎng)控制與分析[D];華北電力大學(北京);2009年
,本文編號:2107449
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/2107449.html