高海拔特高壓輸電線路開式沙塵天氣模擬實驗平臺
本文選題:沙塵天氣 + 實驗平臺; 參考:《華北電力大學(xué)》2017年碩士論文
【摘要】:特高壓輸電由于輸電能力強、路線能耗小等優(yōu)勢具有廣闊的發(fā)展前景。然而,西北地區(qū)高海拔和沙塵環(huán)境會影響特高壓輸電線路的電暈特性,進而影響電網(wǎng)的安全有序運行。因此,研制沙塵天氣模擬實驗平臺可為實驗研究輸電線路電暈特性奠定物質(zhì)基礎(chǔ)。本文闡述了氣固兩相流的基本理論,根據(jù)電暈實驗對沙塵環(huán)境的需求確定了其實驗參數(shù),在此基礎(chǔ)上設(shè)計了自由落沙、旋流擴散和類平拋擴散三種方案下的沙塵天氣模擬實驗平臺。采用理論分析和數(shù)值模擬相結(jié)合的方法,對上述方案在不同風(fēng)速及顆粒粒徑下的顆粒擴散區(qū)域進行了對比分析,以探尋既能滿足實驗需求又操控方便的方案并確定之。從縮短管路總長和降低管路壓損兩個角度,對已初步確定的旋流擴散方案實驗平臺進行了優(yōu)化設(shè)計;并對該優(yōu)化后實驗平臺在不同的給沙率、顆粒粒徑和風(fēng)速下的顆粒擴散情況進行了研究,以獲得實驗區(qū)域的沙塵濃度特性;對該優(yōu)化后實驗平臺中的風(fēng)機和給料器以及控制、測量和支撐等裝置進行選型設(shè)計以利其工程化,并實驗研究了給料器的給料特性。研究結(jié)果表明:1)旋流擴散方案的實驗平臺既滿足實驗需求且又操控方便;2)優(yōu)化后實驗平臺其上下直管長度均為2m,前后導(dǎo)流器開度均為30?,給料管距前級導(dǎo)流器的軸向距離為0.5m,給料口縱向位于風(fēng)管軸心,此時壓損系數(shù)與未優(yōu)化前相比減小0.25;3)優(yōu)化后實驗平臺可滿足不同工況下距風(fēng)管出口4m,縱向標(biāo)高為6.72m的實驗區(qū)域3?3m2的沙塵覆蓋,且沙塵濃度精確可控;4)在給沙率、風(fēng)速和顆粒粒徑分別為(0.005~0.03)kg/s、(6~9)m/s和(0.125和0.25)mm的情況下,優(yōu)化后實驗平臺在實驗區(qū)域內(nèi)的沙塵濃度隨風(fēng)速增加先增后減,且0.125mm和0.25mm粒徑下的拐點對應(yīng)風(fēng)速分別為7m/s和8m/s;沙塵濃度增幅隨給沙率增加而增加;5)給料器給料率與給料器頻率基本呈線性關(guān)系。
[Abstract]:UHV transmission has a broad development prospect because of its strong transmission capacity and low energy consumption. However, the high altitude and dust environment in Northwest China will affect the corona characteristics of UHV transmission lines, and then affect the safe and orderly operation of the power grid. Therefore, the development of sand and dust weather simulation experimental platform can lay a material foundation for the experimental study of corona characteristics of transmission lines. In this paper, the basic theory of gas-solid two-phase flow is described, and the experimental parameters are determined according to the requirements of the corona experiment for the sand and dust environment. On this basis, the free sediment dropping is designed. The experimental platform of sand and dust weather simulation under three schemes of swirl diffusion and flat throwing diffusion. By using the method of theoretical analysis and numerical simulation, the particle diffusion regions under different wind speeds and particle sizes are compared and analyzed in order to find out a scheme that can meet the experimental requirements and control conveniently. From two angles of shortening the total length of pipeline and reducing the pressure loss of pipeline, the experimental platform of swirl diffusion scheme that has been preliminarily determined has been optimized and designed, and the experimental platform has been optimized for different sand feeding rates after the optimization. The particle size and particle diffusion under wind speed were studied to obtain the dust concentration characteristics in the experimental area, and the fan and feeder in the optimized experimental platform and its control were obtained. The measuring and supporting devices were selected and designed for engineering, and the feeding characteristics of the feeder were studied experimentally. The results show that the experimental platform of the swirl diffusion scheme not only meets the experimental requirements but also has convenient operation. The optimized experimental platform has a straight tube length of 2 m, an opening of both front and rear conductors, and a feed tube distance from the axis of the front stage guide. The direction distance is 0.5 m, the feed port is located longitudinally on the axis of the air pipe, At this time, the pressure loss coefficient is reduced by 0.25m3 compared with that before optimization. After the optimization, the experimental platform can satisfy the dust coverage of 3?3m2 in the experimental area with a longitudinal elevation of 6.72m and 4m from the outlet of the wind pipe under different operating conditions, and the dust concentration is accurately controlled. When the wind speed and particle size were (0.005 ~ 0.03) kg / s, (6 ~ 9) m / s and (0.125) mm, respectively, the dust concentration in the experimental area increased first and then decreased with the increase of wind speed. The inflection points of 0.125mm and 0.25mm particle size are 7m/s and 8m / s, respectively, and the increase of dust concentration increases with the increase of sand feed rate. (5) the feed rate of the feeder has a linear relationship with the frequency of the feeder.
【學(xué)位授予單位】:華北電力大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TM75
【參考文獻】
相關(guān)期刊論文 前10條
1 劉明虎;朱金雷;辛智鳴;趙英銘;劉保清;馬迎賓;李臻;劉志民;;用于研究種子風(fēng)力傳播的野外環(huán)境風(fēng)洞[J];生態(tài)學(xué)雜志;2015年06期
2 劉振亞;;中國特高壓交流輸電技術(shù)創(chuàng)新[J];電網(wǎng)技術(shù);2013年03期
3 尤少華;劉云鵬;律方成;萬啟發(fā);趙志斌;黃宗君;邢琳;;不同海拔下電暈籠分裂導(dǎo)線起暈電壓的計算分析[J];中國電機工程學(xué)報;2012年04期
4 孫濤;萬保權(quán);陳豫朝;樊亮;郭浩洲;關(guān)慶華;;積灰對輸電線路導(dǎo)線電暈特性影響的電暈籠試驗分析[J];高電壓技術(shù);2010年12期
5 陽林;郝艷捧;李立mg;趙宇明;黎小林;;沙塵暴條件下長棒形瓷絕緣子風(fēng)洞帶電積污試驗[J];高電壓技術(shù);2010年11期
6 馮治國;楊嘉祥;萬春;謝世強;;帶毛刺高壓導(dǎo)線電暈放電分析[J];黑龍江電力;2009年06期
7 賀博;萬軍;陳邦發(fā);高乃奎;彭宗仁;;人工模擬沙塵氣候環(huán)境下線路絕緣子積污特性研究[J];西安交通大學(xué)學(xué)報;2008年12期
8 范建斌;谷琛;李軍;宿志一;李中新;何寶龍;殷禹;甘倫;徐世山;康鈞;;±800kV典型直流設(shè)備電暈起始電壓的海拔校正方法[J];中國電機工程學(xué)報;2008年25期
9 范建斌;谷琛;殷禹;宿志一;李中新;何寶龍;李軍;甘倫;徐世山;康鈞;;±800 kV管母線的電暈起始特性研究[J];中國電機工程學(xué)報;2008年22期
10 趙宇明;麻敏華;關(guān)志成;惠建峰;王黎明;李秋瑋;;導(dǎo)線污穢對高壓直流輸電線路電暈特性的影響[J];高電壓技術(shù);2007年12期
相關(guān)博士學(xué)位論文 前3條
1 朱雷;高海拔沙塵條件下750kV交流輸電線路導(dǎo)線電暈特性研究[D];華北電力大學(xué);2015年
2 吳麗萍;NK-1可移動式風(fēng)蝕風(fēng)洞氣動結(jié)構(gòu)設(shè)計與研制[D];南開大學(xué);2012年
3 榮姣鳳;移動式風(fēng)蝕風(fēng)洞研制與應(yīng)用[D];中國農(nóng)業(yè)大學(xué);2004年
相關(guān)碩士學(xué)位論文 前6條
1 王通;蘭新線沙塵天氣模擬實驗系統(tǒng)研究[D];華北電力大學(xué);2016年
2 林影超;風(fēng)沙環(huán)境對LGJ-400/50架空導(dǎo)線表面的侵蝕規(guī)律研究[D];華北電力大學(xué);2015年
3 張波;G4-73型離心風(fēng)機蝸殼與葉輪適配性數(shù)值模擬研究[D];華北電力大學(xué);2015年
4 史耀虎;沙塵暴導(dǎo)致輸電導(dǎo)線產(chǎn)生電暈的機理研究[D];蘇州大學(xué);2011年
5 邢麗娜;特高壓輸電線路電暈損失的分析計算[D];華北電力大學(xué)(河北);2007年
6 白金;非均勻電場中沙塵兩相體放電實驗研究[D];華中科技大學(xué);2007年
,本文編號:2095680
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/2095680.html