過(guò)渡金屬離子摻雜和表面活性劑修飾聚苯胺的合成及其在染料敏化太陽(yáng)能電池中的應(yīng)用
發(fā)布時(shí)間:2018-07-03 03:44
本文選題:染料敏化太陽(yáng)能電池 + 對(duì)電極; 參考:《河北師范大學(xué)》2017年碩士論文
【摘要】:對(duì)電極是染料敏化太陽(yáng)能電池(DSSCs)的重要組成部分,起著傳遞外電路電子和催化再生氧化還原電對(duì)的作用。鉑(Pt)是常用的高效對(duì)電極催化材料。然而,Pt價(jià)格昂貴且儲(chǔ)量有限,限制了其在DSSCs中的大規(guī)模使用。由此各種非Pt對(duì)電極材料成為研究熱點(diǎn)。如碳材料、過(guò)渡金屬化合物、有機(jī)導(dǎo)電聚合物。其中導(dǎo)電聚合物具有合成過(guò)程簡(jiǎn)單,原料豐富、可塑性強(qiáng)等特點(diǎn),有利于降低DSSCs成本,適宜工業(yè)化生產(chǎn)。1)本論文采用電化學(xué)和化學(xué)法合成導(dǎo)電聚合物聚苯胺(PANI)。探討了過(guò)渡金屬離子摻雜和表面活性劑修飾對(duì)其催化性能的影響。研究發(fā)現(xiàn)采用電化學(xué)方法合成的PANI對(duì)電極的DSSCs效率為3.87%,Ni~(2+)、Co~(2+)、Mn~(2+)三種離子修飾的PANI電極的催化活性明顯提高,DSSCs的效率分別為4.70%、4.57%和3.94%。然而,Cu~(2+)離子摻雜則會(huì)降低PANI的催化活性。催化活性的差異是由于金屬離子與PANI不同的配位構(gòu)型所造成。采用化學(xué)法合成的PANI的催化活性較低,電池效率僅為1.94%。Mn~(2+)、Ni~(2+)和Co~(2+),摻雜同樣可提高PANI的催化活性,電池效率分別達(dá)到4.41%、2.36%、2.10%。Cu~(2+)摻雜則使電池效率下降為1.41%。為了提高電極的導(dǎo)電性,制備了MWCNT PANI以及Graphene-PANI復(fù)合型對(duì)電極。研究證明復(fù)合了MWCNT或Graphene的電極的催化活性明顯升高;贜i~(2+),Co~(2+)摻雜MWCNT PANI對(duì)電極的電池效率提高到6.00%和5.75%;基于Mn~(2+),Co~(2+)摻雜Graphene PANI對(duì)電極提高到5.38%和4.65%;2)本文還考察了乙二胺四乙酸二鈉、靈芝多糖和十二烷基硫酸鈉等表面活性劑修飾對(duì)化學(xué)方法合成的PANI催化性能的影響。實(shí)驗(yàn)結(jié)果顯示,表面活性劑修飾可明顯改變PANI的電極形貌。乙二胺四乙酸二鈉修飾的PANI電極表面微觀結(jié)構(gòu)為珊瑚狀;靈芝多糖修飾的PANI電極表面則由微小顆粒堆積而成;十二烷基硫酸鈉修飾PANI電極表面呈典型的棒狀結(jié)構(gòu)。不同的電極形貌導(dǎo)致了PANI催化活性的不同,以乙二胺四乙酸二鈉、靈芝多糖和十二烷基硫酸修飾的PANI為對(duì)電極的電池效率分別為2.51%、2.69%和4.25%,均高于以不經(jīng)修飾的PANI為對(duì)電極的電池效率(2.29%)。綜上所述,Ni~(2+)、Co~(2+)和Mn~(2+)摻雜能不同程度的提高PANI對(duì)電極的催化活性。通過(guò)MWCNT、Graphene復(fù)合或表面活性劑修飾均可進(jìn)一步提高PANI的催化性能。本文研究的導(dǎo)電聚合物非Pt電極材料有利于降低DSSCs的成本,提高其在各種光伏器件中的競(jìng)爭(zhēng)力。
[Abstract]:Pair electrode is an important component of dye sensitized solar cells (DSSCs), which plays the role of external circuit electron transfer and catalytic regeneration redox pair. Platinum (Pt) is one of the most effective catalytic materials for electrode. Therefore, all kinds of non-Pt electrode materials have become the focus of research. Such as carbon materials, transition metal compounds, organic conductive polymers. Conductive polymers have the advantages of simple synthesis, abundant raw materials, strong plasticity, which is beneficial to reduce the cost of DSSCs, and is suitable for industrial production of .1) in this paper, the electrochemistry and chemical methods are used to synthesize conductive polymer Polyaniline (pani). The effects of transition metal ion doping and surfactant modification on their catalytic properties were investigated. It was found that the catalytic activity of pani electrode modified with Ni ~ (2) Co ~ (2) O ~ (2) O ~ (2) and Ni ~ (2) O ~ (2) mn ~ (2) was 4.70% and 3.94%, respectively. However, doping with Cu2 ions will decrease the catalytic activity of pani. The difference in catalytic activity is due to the different coordination configurations of metal ions and pani. The catalytic activity of pani synthesized by chemical method is relatively low, and the efficiency of the battery is only 1.94. Mn2 + Ni2 and Co2. Doping can also improve the catalytic activity of pani. The efficiency of the battery reached 4.41% 2.36% 2.10%. Cu2 doping decreased the efficiency of the battery to 1.41l. In order to improve the conductivity of the electrode, MWCNT and Graphene-PANI composite counter electrodes were prepared. The results showed that the catalytic activity of the electrode with MWCNT or Graphene was significantly increased. The battery efficiency of electrode was increased to 6.00% and 5.75 based on Ni ~ (2) Co ~ (2) doped MWCNT / pani and Mn2 / Co ~ (2) doped Graphene / pani pair electrode to 5.38% and 4.65% respectively. Effects of modified surfactants such as Ganoderma lucidum polysaccharides and sodium dodecyl sulfate on the catalytic properties of pani synthesized by chemical method. The experimental results show that surfactant modification can obviously change the morphology of pani electrode. The surface microstructure of pani electrode modified by ethylenediamine tetraacetate disodium acetate was coral, the surface of pani electrode modified by Ganoderma lucidum polysaccharide was piled up by tiny particles, and the surface of pani electrode modified by sodium dodecyl sulfate showed typical rod-like structure. Different electrode morphology resulted in different catalytic activity of pani, and disodium ethylenediamine tetraacetate, The cell efficiency of pani modified with Ganoderma lucidum polysaccharide and dodecyl sulphuric acid was 2.51% and 4.25%, respectively, which was higher than that of unmodified pani (2.29%). In conclusion, the doping of Ni ~ (2) Co ~ (2) and mn ~ (2) can improve the catalytic activity of pani to different extent. The catalytic performance of pani can be further improved by MWCNT- Graphene composite or surfactant modification. The conductive polymer non-Pt electrode materials studied in this paper can reduce the cost of DSSCs and improve their competitiveness in various photovoltaic devices.
【學(xué)位授予單位】:河北師范大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TM914.4
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 潘瑋;;Thermal behavior and Rheological Properties of PANI-DBSA/PAN Blends[J];Journal of Wuhan University of Technology(Materials Science Edition);2007年01期
2 賴延清;李晶;李R,
本文編號(hào):2092243
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/2092243.html
最近更新
教材專著