基于多目標(biāo)算法的企業(yè)負(fù)荷優(yōu)化及變壓器最優(yōu)控制
本文選題:負(fù)荷優(yōu)化分配 + 全局人工魚群算法 ; 參考:《太原理工大學(xué)》2017年碩士論文
【摘要】:鋼鐵企業(yè)作為電力行業(yè)中最為典型的用電大戶,其電能的消耗在生產(chǎn)成本中占有很大比重。隨著經(jīng)濟下滑,鋼鐵企業(yè)負(fù)荷量嚴(yán)重縮水,因此導(dǎo)致企業(yè)配電變壓器運行損耗劇增。本課題針對首鋼長治鋼鐵有限公司中變壓器普遍處于非經(jīng)濟運行狀態(tài)的問題,通過結(jié)合該企業(yè)實際負(fù)荷情況構(gòu)建負(fù)荷預(yù)測模型,并對長鋼站下屬鋼南、鋼西、鋼北三站的負(fù)荷進行重新分配,之后根據(jù)負(fù)荷波動的情況提出變壓器經(jīng)濟運行控制策略,用以實現(xiàn)變壓器最優(yōu)運行并達(dá)到降低該企業(yè)變壓器運行損耗的目的。主要包括以下幾個方面:(1)本文總結(jié)和分析現(xiàn)有負(fù)荷預(yù)測方法,比較傳統(tǒng)最小二乘支持向量機與神經(jīng)網(wǎng)絡(luò)在負(fù)荷預(yù)測應(yīng)用中的優(yōu)劣,重點分析采用最小二乘支持向量機進行負(fù)荷預(yù)測的不足以及現(xiàn)有最優(yōu)最小二乘支持向量機模型的特點,提出將對于二維空間尋優(yōu)具有較高精度的全局人工魚群算法與最小二乘支持向量機相結(jié)合,構(gòu)建新的負(fù)荷預(yù)測模型,并結(jié)合該企業(yè)長鋼站的負(fù)荷驗證其預(yù)測模型的準(zhǔn)確性。最后對長鋼站未來五年負(fù)荷進行預(yù)測,該預(yù)測值同時為后續(xù)負(fù)荷分配提供了新的思路。(2)本文考察了當(dāng)前首鋼長治鋼鐵企業(yè)負(fù)荷現(xiàn)狀,對變壓器經(jīng)濟負(fù)載系數(shù)以及經(jīng)濟運行區(qū)間進行分析。考慮到由于負(fù)荷的地理因素在分配過程中將產(chǎn)生新架設(shè)線路的情況,這里通過考察各線路負(fù)荷情況,依據(jù)最新山西國家電網(wǎng)架空線以及桿塔選擇條件對每條線路的架空線類型以及桿塔數(shù)量進行選擇,并將其費用計入負(fù)荷分配優(yōu)化過程中。為了同時滿足變壓器經(jīng)濟運行和負(fù)荷分配費用最低這兩個分配因素,提出采用多目標(biāo)NASG-II算法對鋼南、鋼北、鋼西站負(fù)荷進行分配,得到Parteo前沿最優(yōu)解集并對該解集進行深入分析,結(jié)果顯示負(fù)荷分配后該站變壓器的運行損耗明顯減少。最后依據(jù)該站后五年負(fù)荷預(yù)測結(jié)果,為該企業(yè)制定一套切合實際的負(fù)荷分配方案。(3)當(dāng)前鋼鐵企業(yè)為了保證自身運行的可靠性,企業(yè)中變電站長期保持兩臺變壓器并列運行狀態(tài)。然而鋼鐵企業(yè)負(fù)荷具有較大的波動性,其運行過程中難免出現(xiàn)非經(jīng)濟運行的狀態(tài)。針對此問題,本文通過分析變壓器經(jīng)濟運行方式,得出變壓器在不同運行方式下的節(jié)電效益,基于全局人工魚群算法確定變壓器最優(yōu)投切策略。考慮傳統(tǒng)全局人工魚群算法在尋優(yōu)過程中可行域是連續(xù)的,然而實際上本文所研究問題的可行域是離散的,提出改進的全局人工魚群算法用以實現(xiàn)在離散空間中確定變壓器最優(yōu)投切策略的目的。最后將該方法用于鋼東站變壓器運行中,驗證了所提方法的有效性。
[Abstract]:Iron and steel enterprises as the most typical power users in the power industry, its electricity consumption in the production costs account for a large proportion. With the economic downturn, the load of iron and steel enterprises shrinks severely, resulting in a sharp increase in the operation loss of distribution transformers. Aiming at the problem that transformers in Changzhi Iron and Steel Co., Ltd of Shougang are generally in non-economical running state, the paper constructs a load forecasting model combining with the actual load situation of this enterprise, and makes a load forecasting model for the south and west of Changgang Station. According to the load fluctuation, the economic operation control strategy of transformer is put forward in order to realize the optimal operation of transformer and reduce the operation loss of transformer in this enterprise. The main contents are as follows: (1) this paper summarizes and analyzes the existing load forecasting methods and compares the advantages and disadvantages of traditional least squares support vector machines and neural networks in load forecasting applications. The deficiency of least square support vector machine (LS-SVM) for load forecasting and the characteristics of the existing optimal LS-SVM model are analyzed. A new load forecasting model is constructed by combining the global artificial fish swarm algorithm with the least square support vector machine, which has high precision for two-dimensional spatial optimization, and the accuracy of the forecasting model is verified by the load of the enterprise's Changgang station. Finally, the load of Changzhi Iron and Steel Station in the next five years is forecasted, which also provides a new idea for the subsequent load distribution. (2) this paper reviews the current load situation of Changzhi Iron and Steel Enterprise in Shougang. The economic load coefficient and economic operation interval of transformer are analyzed. Taking into account the fact that the geographical factors of the load will result in new lines being erected during the distribution process, here through an examination of the load on each line, According to the latest selection conditions of overhead lines and towers of Shanxi State Grid, the types of overhead lines and the number of towers of each line are selected, and the cost is taken into account in the optimization process of load distribution. In order to satisfy the two distribution factors of transformer economic operation and lowest load distribution cost simultaneously, a multi-objective NASG-II algorithm is proposed to distribute the load of steel south, north and west stations. The optimal solution set of Parteo front is obtained and analyzed in depth. The results show that the operation loss of transformer in this station is obviously reduced after load distribution. Finally, according to the result of load forecasting in the later five years of the station, a suit of practical load distribution scheme is worked out for the enterprise. (3) in order to ensure the reliability of its own operation, the substation in the enterprise keeps two transformers running side by side for a long time. However, the load of iron and steel enterprises is fluctuating, and it is inevitable that non-economic operation occurs in the process of operation. In order to solve this problem, by analyzing the economic operation mode of transformer, this paper obtains the power saving benefit of transformer under different operation modes, and determines the optimal switching strategy of transformer based on global artificial fish swarm algorithm. Considering that the feasible region of traditional global artificial fish swarm algorithm is continuous in the process of optimization, however, in fact, the feasible region of the problem studied in this paper is discrete. An improved global artificial fish swarm algorithm is proposed to determine the optimal switching strategy of transformer in discrete space. Finally, the method is applied to the transformer operation of East Steel Station, and the validity of the proposed method is verified.
【學(xué)位授予單位】:太原理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TM41
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 金洪吉;;火電廠機組負(fù)荷優(yōu)化分配的混沌粒子群算法分析[J];電子器件;2017年01期
2 程虹;楊為群;朱文廣;楊超;王偉;熊寧;;基于改進粒子群算法的交直流系統(tǒng)低壓切負(fù)荷優(yōu)化控制策略[J];電力科學(xué)與技術(shù)學(xué)報;2016年04期
3 張炳球;;變壓器經(jīng)濟運行現(xiàn)實意義及實現(xiàn)途徑分析[J];機電技術(shù);2016年05期
4 馬清艷;張亞;;基于最小二乘支持向量機的應(yīng)力強度因子預(yù)測模型[J];機械設(shè)計與研究;2016年04期
5 張棟梁;嚴(yán)健;李曉波;任曉達(dá);張金忠;張福來;;基于馬爾可夫鏈篩選組合預(yù)測模型的中長期負(fù)荷預(yù)測方法[J];電力系統(tǒng)保護與控制;2016年12期
6 孟安波;胡函武;劉向東;;基于縱橫交叉算法優(yōu)化神經(jīng)網(wǎng)絡(luò)的負(fù)荷預(yù)測模型[J];電力系統(tǒng)保護與控制;2016年07期
7 何琬;劉進;朱肖晶;;基于深層神經(jīng)網(wǎng)絡(luò)的電力負(fù)荷預(yù)測[J];環(huán)境與可持續(xù)發(fā)展;2016年01期
8 王寧;謝敏;鄧佳梁;劉明波;李嘉龍;王一;劉思捷;;基于支持向量機回歸組合模型的中長期降溫負(fù)荷預(yù)測[J];電力系統(tǒng)保護與控制;2016年03期
9 劉曉菲;商立群;;非線性主成分分析和RBF神經(jīng)網(wǎng)絡(luò)的電力系統(tǒng)負(fù)荷預(yù)測[J];電網(wǎng)與清潔能源;2016年01期
10 王保義;王冬陽;張少敏;;基于Spark和IPPSO_LSSVM的短期分布式電力負(fù)荷預(yù)測算法[J];電力自動化設(shè)備;2016年01期
相關(guān)博士學(xué)位論文 前1條
1 李曉磊;一種新型的智能優(yōu)化方法-人工魚群算法[D];浙江大學(xué);2003年
相關(guān)碩士學(xué)位論文 前1條
1 高媛;非支配排序遺傳算法(NSGA)的研究與應(yīng)用[D];浙江大學(xué);2006年
,本文編號:2090932
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/2090932.html