基于DSP的雙向功率計(jì)量與諧波檢測系統(tǒng)研究設(shè)計(jì)
本文選題:雙向功率 + 非正弦; 參考:《廣西大學(xué)》2017年碩士論文
【摘要】:隨著含有分布式電源的家庭微電網(wǎng)接入電力系統(tǒng),自發(fā)自用/余電上網(wǎng)的工作模式使得配電網(wǎng)的潮流分布呈現(xiàn)出雙向性,由此帶來了雙向電能計(jì)量問題。此外,家庭微網(wǎng)中大量的電力電子設(shè)備已經(jīng)成為居民用電的主體,如微波爐、計(jì)算機(jī)、充電汽車、儲(chǔ)能電池整流裝置等,由此造成的非正弦工況需要功率計(jì)量裝置具有更公平合理的計(jì)量方案、算法,而且能夠同時(shí)監(jiān)控用戶的電能質(zhì)量以制定不同的收費(fèi)策略。分布式電源的雙向電能計(jì)量以有功計(jì)量為核心,本文以傳統(tǒng)的計(jì)量關(guān)口作為計(jì)量點(diǎn),利用基波功率方向同四象限功率定義相結(jié)合判定雙向功率的方向。傳統(tǒng)的功率理論和計(jì)量方法是建立在正弦情況下,在非正弦情況下的諧波會(huì)造成電能表計(jì)量不準(zhǔn)確、不公平。本文對(duì)比分析了非正弦工況下頻域、時(shí)域、時(shí)頻結(jié)合的三種功率理論對(duì)計(jì)量影響,進(jìn)行了 MATLAB仿真分析驗(yàn)證。結(jié)合電流物理分量(CPC)功率理論中背景諧波和反射諧波的定義,本文提出一種綜合計(jì)量方案,即微電網(wǎng)正向受電時(shí)分別計(jì)量基波有功、背景諧波有功、反射諧波有功、絕對(duì)值無功,微電網(wǎng)反向饋電時(shí)分別計(jì)量基波有功、諧波有功。本文采用快速傅里葉(FFT)方法進(jìn)行諧波檢測和功率計(jì)算,分析了其產(chǎn)生頻譜泄漏和柵欄效應(yīng)的原因、以及常用窗函數(shù)和檢測精度問題。針對(duì)非同步采樣,本文基于時(shí)域漢寧窗互乘的方法構(gòu)建了三項(xiàng)余弦組合窗,分析互乘漢寧窗的時(shí)頻特性,并同漢寧窗、四項(xiàng)萊夫文森特窗進(jìn)行仿真對(duì)比分析。并采用雙譜線插值法結(jié)合互乘漢寧窗改進(jìn)FFT算法,對(duì)改進(jìn)的算法進(jìn)行了諧波檢測和功率計(jì)量仿真,結(jié)果表明改進(jìn)算法可以有效抑制頻譜泄漏,對(duì)功率計(jì)量和諧波檢測有較高的精度。在互乘漢寧窗雙譜線插值改進(jìn)FFT算法的基礎(chǔ)上,本文基于TMS320F28335 DSP和AD7606硬件結(jié)構(gòu),研究開發(fā)一款功率計(jì)量和諧波檢測一體化的裝置,完成了系統(tǒng)的硬件、軟件設(shè)計(jì)和外設(shè)電路制作調(diào)試。詳細(xì)介紹了硬件芯片資源分配、核心電路、高頻信號(hào)采集電路、通信電路。根據(jù)模塊化設(shè)計(jì)流程,設(shè)計(jì)和調(diào)試系統(tǒng)主程序、電參量計(jì)算程序和串口通信程序,同時(shí)利用DMA上傳采樣數(shù)據(jù)至DSP以保證實(shí)時(shí)性。采用cMT-SVR上位機(jī)設(shè)計(jì)了人機(jī)交互界面,方便用戶實(shí)時(shí)查看電量信息。最后結(jié)合實(shí)驗(yàn)室現(xiàn)有設(shè)備進(jìn)行實(shí)驗(yàn),結(jié)果表明系統(tǒng)可以實(shí)現(xiàn)采集檢測功能以及諧波分析和功率計(jì)算功能。
[Abstract]:As the home microgrid with distributed power supply is connected to the power system, the spontaneous self-use / surplus power network mode makes the distribution of power flow of the distribution network bidirectional, which brings about the bidirectional power measurement problem. In addition, a large number of power electronic devices in the household microgrid have become the main power users, such as microwave ovens, computers, rechargeable cars, energy storage battery rectifiers, etc. The resulting non-sinusoidal conditions require that the power metering device has a more fair and reasonable metering scheme, an algorithm, and the ability to monitor the power quality of the user at the same time in order to formulate different charging strategies. Active power measurement is the core of the bidirectional power measurement of distributed power generation. In this paper, the traditional metering gate is taken as the measuring point, and the direction of bidirectional power is determined by combining the fundamental power direction with the four-quadrant power definition. The traditional power theory and metering methods are based on sinusoidal conditions. Harmonics in non-sinusoidal situations will cause inaccurate and unfair measurement of watt-hour meters. In this paper, the effects of frequency domain and time-frequency combined power theory on measurement are compared and verified by MATLAB simulation. Combined with the definition of background harmonics and reflected harmonics in current physical component (CPC) power theory, a comprehensive measurement scheme is proposed in this paper, that is, the fundamental active power, background harmonic active power and reflected harmonic active power are measured respectively when the micro-grid is positively charged. Absolute reactive power, microgrid reverse feed measurement of fundamental active power, harmonic active power. In this paper, the fast Fourier transform (FFT) method is used for harmonic detection and power calculation. The causes of spectrum leakage and fence effect, as well as the common window function and detection accuracy are analyzed. Aiming at asynchronous sampling, this paper constructs three cosine combination windows based on the method of time domain Hanning window multiplication, analyzes the time-frequency characteristics of the cross-multiplication Hanning window, and makes a simulation comparison with the Hanning window and four Lefe Vincent windows. The harmonic detection and power measurement simulation of the improved FFT algorithm are carried out by using the double spectral line interpolation method combined with the improved FFT algorithm. The results show that the improved algorithm can effectively suppress the spectrum leakage. It has high accuracy for power measurement and harmonic detection. On the basis of the improved FFT algorithm based on the double spectral line interpolation of the Hanning window, based on the TMS320F28335 DSP and AD7606 hardware structure, this paper studies and develops an integrated device of power measurement and harmonic detection, and completes the hardware of the system. Software design and peripheral circuit debugging. The hardware chip resource allocation, core circuit, high frequency signal acquisition circuit and communication circuit are introduced in detail. According to the modularization design flow, the main program, electric parameter calculation program and serial port communication program of the system are designed and debugged. At the same time, DMA is used to upload the sampling data to DSP to ensure real-time performance. The man-machine interface is designed by using cMT-SVR PC, which is convenient for users to view electricity information in real time. Finally, the experimental results show that the system can realize the functions of collection and detection, harmonic analysis and power calculation.
【學(xué)位授予單位】:廣西大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TM935
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張育嘉;楊蘋;許志榮;彭嘉俊;宋嗣博;陳奇芳;喻磊;雷金勇;;戶用型光儲(chǔ)微電網(wǎng)一體化終端方案設(shè)計(jì)[J];南方電網(wǎng)技術(shù);2016年10期
2 范小龍;謝維成;蔣文波;李毅;黃小莉;;一種平穩(wěn)小波變換改進(jìn)閾值函數(shù)的電能質(zhì)量擾動(dòng)信號(hào)去噪方法[J];電工技術(shù)學(xué)報(bào);2016年14期
3 張俊敏;劉開培;汪立;陳文娟;王亞楠;;基于Hanning自乘法窗函數(shù)的高精度諧波分析[J];智能電網(wǎng);2016年05期
4 林海雪;;No.6電功率理論的概況與發(fā)展[J];供用電;2016年04期
5 魏天彩;陶順;羅超;肖湘寧;蘇斌;;電流物理分量理論的認(rèn)識(shí)與分析[J];電測與儀表;2016年01期
6 申展;胡輝勇;雷金勇;許愛東;郭曉斌;彭勇剛;楊蘋;;分布式電源接入用戶及用戶側(cè)微電網(wǎng)雙向電能計(jì)量問題[J];南方電網(wǎng)技術(shù);2015年04期
7 郝柱;顧偉;褚建新;麻朝;;基于四譜線插值FFT的電網(wǎng)諧波檢測方法[J];電力系統(tǒng)保護(hù)與控制;2014年19期
8 肖湘寧;羅超;陶順;;電氣系統(tǒng)功率理論的發(fā)展與面臨的挑戰(zhàn)[J];電工技術(shù)學(xué)報(bào);2013年09期
9 張保會(huì);付科源;鄭濤;梁棟;王龍;閆晨光;;用電設(shè)備智(自)聯(lián)網(wǎng)的概念與實(shí)現(xiàn)技術(shù)(一)——定義、架構(gòu)與功能[J];電力系統(tǒng)保護(hù)與控制;2013年06期
10 付志紅;熊學(xué)海;侯興哲;李春燕;張淮清;;Fryze時(shí)域無功與通用無功定義的一致性條件分析[J];電力自動(dòng)化設(shè)備;2013年03期
相關(guān)碩士學(xué)位論文 前4條
1 劉慧眾;雙向電能計(jì)量算法研究[D];哈爾濱工業(yè)大學(xué);2015年
2 徐陳成;微電網(wǎng)多功能測控裝置的設(shè)計(jì)與實(shí)現(xiàn)[D];東南大學(xué);2015年
3 史哲;分布式電源接入雙向計(jì)量與監(jiān)控一體化終端設(shè)計(jì)[D];浙江大學(xué);2015年
4 熊學(xué)海;電能計(jì)量實(shí)時(shí)仿真系統(tǒng)研究[D];重慶大學(xué);2011年
,本文編號(hào):2090479
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/2090479.html