分布式單相非隔離光伏并網(wǎng)逆變器的研究
本文選題:光伏并網(wǎng) + 誤判; 參考:《杭州電子科技大學》2017年碩士論文
【摘要】:隨著化石燃料的不斷使用,人類生存面臨巨大的威脅,清潔能源的開發(fā)利用已經(jīng)迫在眉睫。太陽能具有分布區(qū)域廣,可用途徑多的特點,是未來最有應用前景的清潔能源之一。太陽能發(fā)電作為利用太陽能的主要方式之一,其清潔無污染,是未來緩解用電緊張和改善生態(tài)環(huán)境的有效方式。大型集中光伏發(fā)電的形式在我國仍然擁有絕對的優(yōu)勢。隨著大型光伏電站的輸電難和我國西部地區(qū)光伏電站棄光問題越來越嚴重,大型光伏電站并沒有達到我國利用太陽能發(fā)電的預期。利用太陽能發(fā)展分布式發(fā)電將能很好地避免現(xiàn)階段我國在光伏發(fā)電中遇到的問題,并且其投入較小,從規(guī)劃到發(fā)電周期較短。其必然會取代集中式光伏發(fā)電成為主要的光伏發(fā)電形式。目前分布式光伏發(fā)電中所使用的逆變器仍需改進的方面有:1、逆變器前級電路的選型和誤判問題。逆變器增加前級升壓環(huán)節(jié)提高了系統(tǒng)日工作時間,使光伏陣列輸出功率最大化,但是就逆變器本身而言增加了功耗,并且在最大功率點追蹤過程中存的誤判將會導致功率發(fā)生抖動。2、逆變器內部的低次諧波問題。單相逆變器并網(wǎng)運行時的瞬時輸出功率具有的波動性造成直流母線電壓產(chǎn)生二次紋波,這將降低逆變器壽命并造成輸出電流三次諧波增大。3、對地共模電流問題。逆變器內部在無變壓器隔離的情況下并網(wǎng)運行時,光伏電池與接地金屬外殼之間的寄生電容與電網(wǎng)形成回路,高頻的共模電壓通過回路產(chǎn)生電流,使系統(tǒng)的安全性下降。本文針對以上三方面首先提出前級采用了ZVT-Boost電路降低前級的損耗,并優(yōu)化傳統(tǒng)的電導增量法,增加光伏電池功率估計避免工作時的誤判問題。其次為了降低輸出電流諧波提高逆變器使用壽命,提出在直流母線上加入源濾波裝置對二次紋波進行濾除。第三分析了能夠在工作時保持共模電壓不變的逆變拓撲,結合共模等效電路闡述了共模電流高頻分量產(chǎn)生的原因,提出了一種采用雙共模內回路的方法抑制共模電流高頻分量。最后通過仿真和實驗平臺對本文中所研究的內容進行了分析和驗證,證明了本文中研究成果的有效性。
[Abstract]:With the continuous use of fossil fuels, human survival is facing a huge threat, the development and utilization of clean energy is imminent. Solar energy is one of the most promising clean energy in the future because of its wide distribution and many available ways. As one of the main ways to utilize solar energy, solar power generation is clean and pollution-free, which is an effective way to relieve the shortage of electricity and improve the ecological environment in the future. The form of large-scale concentrated photovoltaic power generation still has absolute advantage in our country. With the difficulty of transmission of large-scale photovoltaic power stations and the more and more serious problem of light abandonment of photovoltaic power stations in western China, large-scale photovoltaic power plants do not meet the expectations of solar power generation in China. Using solar energy to develop distributed power generation can avoid the problems encountered in photovoltaic power generation in China at present, and its investment is relatively small, and the cycle from planning to generating electricity is short. It will replace the centralized photovoltaic power generation as the main form of photovoltaic power generation. At present, the inverter used in distributed photovoltaic power generation still needs to be improved in the aspects of: 1, the selection and misjudgment of the inverter's front-stage circuit. The increase of the front stage boost of the inverter increases the daily working time of the system and maximizes the output power of the photovoltaic array, but increases the power consumption of the inverter itself. And the misjudgment in the process of maximum power point tracking will lead to the power jitter. 2, the low order harmonic problem in the inverter. The fluctuation of instantaneous output power of single-phase inverter in grid-connected operation results in the secondary ripple of DC bus voltage, which will reduce the life of inverter and cause the third harmonic increase of output current. When the inverter is connected to the grid without transformer isolation, the parasitic capacitance between the photovoltaic cell and the grounding metal shell forms a circuit with the grid, and the high frequency common-mode voltage generates current through the circuit, which reduces the security of the system. In this paper, the ZVT-Boost circuit is used to reduce the loss of the front stage, and the traditional conductance increment method is optimized to increase the power estimation of photovoltaic cells to avoid the misjudgment. Secondly, in order to reduce the output current harmonics and improve the service life of the inverter, the secondary ripple is filtered by adding the source filter device to the DC bus. Thirdly, the inverter topology which can keep the common-mode voltage constant is analyzed, and the cause of the high frequency component of the common-mode current is explained by combining the common-mode equivalent circuit. A method to suppress the high-frequency component of the common-mode current is proposed by using a double-common-mode internal loop. Finally, the contents of this paper are analyzed and verified on the platform of simulation and experiment, which proves the validity of the research results in this paper.
【學位授予單位】:杭州電子科技大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TM464;TM615
【參考文獻】
相關期刊論文 前10條
1 趙瑞廣;劉棟良;崔麗麗;魏紅梅;;采用雙共模內回路抑制非隔離光伏并網(wǎng)系統(tǒng)的共模電流的研究[J];電工技術學報;2016年22期
2 曹建博;王林;張海龍;常乾坤;;分布式光伏多機并聯(lián)諧振抑制策略[J];電力電子技術;2016年09期
3 崔麗麗;趙瑞廣;;單相非隔離光伏并網(wǎng)系統(tǒng)的設計[J];工業(yè)控制計算機;2016年08期
4 袁義生;張育源;陳進;胡根連;;兩級式逆變器中間母線電壓低頻紋波抑制[J];電源學報;2016年03期
5 郭小強;賀冉;張純江;;高壓大容量五電平逆變器共模電壓抑制研究[J];電工技術學報;2016年03期
6 王豐;孔鵬舉;Fred C.Lee;卓放;;基于分布式最大功率跟蹤的光伏系統(tǒng)輸出特性分析[J];電工技術學報;2015年24期
7 馬駿;時珊珊;李正力;于浩然;;一種改進的PR控制器在三電平APF中的應用[J];電力電子技術;2015年09期
8 楊曉光;姜龍斌;馮俊博;汪友華;;一種新型高效無變壓器型單相光伏逆變器[J];電工技術學報;2015年08期
9 柳少良;游小杰;李艷;張雅靜;王劍斌;;非隔離型單相光伏并網(wǎng)逆變器共模漏電流抑制方法研究[J];太陽能學報;2014年12期
10 袁義生;張偉平;朱本玉;彭春華;;新型非隔離光伏并網(wǎng)逆變器拓撲及其共模電流分析[J];電網(wǎng)技術;2014年12期
相關博士學位論文 前2條
1 崔文峰;具有共模漏電流抑制能力的單相無變壓器型光伏逆變技術研究[D];浙江大學;2014年
2 馬琳;無變壓器結構光伏并網(wǎng)逆變器拓撲及控制研究[D];北京交通大學;2011年
相關碩士學位論文 前8條
1 劉偉鵬;單相光伏并網(wǎng)逆變器控制策略研究[D];北方工業(yè)大學;2014年
2 漆文龍;單相變換器直流側二次紋波問題研究[D];山東大學;2014年
3 沈實疊;3KW單相光伏并網(wǎng)逆變器的研制[D];浙江大學;2014年
4 曾曉生;基于準比例諧振控制的光伏并網(wǎng)逆變器的研制[D];華南理工大學;2012年
5 劉勝榮;基于DSP控制的光伏發(fā)電系統(tǒng)逆變器的研制[D];華南理工大學;2010年
6 王,
本文編號:2070229
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/2070229.html