三電平軟開關(guān)逆變器研究
本文選題:逆變器 + 軟開關(guān) ; 參考:《合肥工業(yè)大學(xué)》2016年碩士論文
【摘要】:隨著世界能源結(jié)構(gòu)的變化,各國對(duì)清潔能源的需求越來越高,近年來光伏能及風(fēng)能的發(fā)展受到格外重視。逆變器作為新能源轉(zhuǎn)換中的核心部件,如何使其更加高效、小型化、低諧波污染、高可靠性已成為各國學(xué)者的研究重點(diǎn)。而軟開關(guān)技術(shù)則可以很好地解決上述問題,其可以降低開關(guān)損耗,減少電磁干擾及高頻電磁噪聲,并且使得功率開關(guān)管的可靠性進(jìn)一步提高。因此研究軟開關(guān)三電平技術(shù)具有重要價(jià)值。(1)文章首先介紹了三電平軟開關(guān)技術(shù)的研究背景:簡(jiǎn)述了逆變器的發(fā)展現(xiàn)狀以及軟開關(guān)在逆變器應(yīng)用概況。(2)由于軟開關(guān)技術(shù)需要研究IGBT微觀過程,為此建立了IGBT的等效模型,并對(duì)其開通和關(guān)斷過程進(jìn)行了分析,在此基礎(chǔ)上得出IGBT開關(guān)損耗的計(jì)算公式。同時(shí)介紹了T型三電平逆變器及其換流過程,闡述了本文使用空間矢量脈寬調(diào)制法的基本原理以及載波實(shí)現(xiàn)方法,并對(duì)T型三電平逆變器的損耗進(jìn)行分析。(3)文章對(duì)三電平軟開關(guān)逆變器的工作過程進(jìn)行詳盡的理論分析并建立了數(shù)學(xué)模型,通過仿真驗(yàn)證該拓?fù)淇梢詫?shí)現(xiàn)零電壓關(guān)斷和零電流導(dǎo)通。根據(jù)其換相過程給出了緩沖電感及緩沖電容的選型依據(jù),并通過實(shí)驗(yàn)驗(yàn)證其可行性,對(duì)軟硬開關(guān)條件下的開關(guān)過程及損耗進(jìn)行對(duì)比研究。(4)本文對(duì)三電平軟開關(guān)逆變器死區(qū)條件進(jìn)行優(yōu)化,針對(duì)正死區(qū)、負(fù)死區(qū)及無死區(qū)不同模式進(jìn)行研究,詳細(xì)分析了不同工況下?lián)Q相過程的區(qū)別、開關(guān)損耗的變化以及對(duì)輸出電流基波、電流THD的影響,得出最優(yōu)工況。同時(shí)分析了線路中寄生電感對(duì)軟開關(guān)效果產(chǎn)生的不利影響。最后分析軟開關(guān)逆變器換相過程后諧振機(jī)理,并給出了阻容并聯(lián)的諧振抑制方法。(5)最后,搭建了以DSP28335芯片和CPLD為控制核心的三電平軟開關(guān)逆變器平臺(tái),對(duì)本文的理論分析進(jìn)行實(shí)驗(yàn)驗(yàn)證,證明文中理論分析的正確性。
[Abstract]:With the change of energy structure in the world, the demand for clean energy is becoming higher and higher. In recent years, the development of photovoltaic and wind energy has been paid more and more attention. As the core component of new energy conversion, how to make inverter more efficient, miniaturized, low harmonic pollution and high reliability has become the research focus of scholars all over the world. The soft switching technology can solve the above problems well. It can reduce the switching loss, reduce the electromagnetic interference and high frequency electromagnetic noise, and further improve the reliability of the power switch. Therefore, the study of soft-switching three-level technology is of great value. (1) the research background of three-level soft-switching technology is introduced firstly. The development of inverter and the application of soft-switching in inverter are briefly described. (2) due to soft switching, the application of soft-switching in inverter is introduced. Technology needs to study the micro process of IGBT, In this paper, an equivalent model of IGBT is established, and the switching on and off processes are analyzed. On this basis, the formula for calculating the switching loss of IGBT is obtained. At the same time, the T type three-level inverter and its commutation process are introduced, and the basic principle and carrier realization method of space vector pulse width modulation method are described in this paper. The loss of T type three-level inverter is analyzed. (3) the working process of three-level soft-switching inverter is analyzed in detail and the mathematical model is established. Simulation results show that the topology can realize zero voltage turn-off and zero current conduction. According to the commutation process, the selection basis of the buffer inductance and the buffer capacitance is given, and the feasibility is verified by experiments. The switching process and loss under soft and hard switching conditions are compared and studied. (4) the dead-time conditions of three-level soft-switching inverter are optimized, and the different modes of positive dead zone, negative dead time and no dead zone are studied. The difference of commutation process, the change of switching loss and the influence on the output current fundamental wave and current THD are analyzed in detail, and the optimum working condition is obtained. At the same time, the adverse effect of parasitic inductance on soft switch effect is analyzed. Finally, the resonant mechanism of soft-switching inverter after commutation is analyzed, and the resonant suppression method of resistive and capacitive parallel connection is given. (5) finally, a three-level soft-switching inverter platform with DSP28335 chip and CPLD as the control core is built. The theoretical analysis in this paper is verified by experiments, and the correctness of the theoretical analysis is proved.
【學(xué)位授予單位】:合肥工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:TM464
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王強(qiáng);劉巖松;陳祥雪;邢巖;;具有對(duì)稱輔助電路的諧振直流環(huán)節(jié)三電平軟開關(guān)逆變器[J];中國電機(jī)工程學(xué)報(bào);2014年27期
2 李寧;王躍;雷萬鈞;王兆安;;三電平NPC變流器SVPWM策略與SPWM策略的等效關(guān)系研究[J];電網(wǎng)技術(shù);2014年05期
3 Manfred W.Gekeler;;一種達(dá)到最高效率的新型軟切換三電平逆變器拓?fù)浣Y(jié)構(gòu)(英文)[J];中國電機(jī)工程學(xué)報(bào);2013年21期
4 李錦;劉進(jìn)軍;;有源中點(diǎn)鉗位三電平零電流轉(zhuǎn)換軟開關(guān)變流器[J];電工技術(shù)學(xué)報(bào);2013年03期
5 劉賓禮;劉德志;羅毅飛;唐勇;汪波;;基于電壓電流的IGBT關(guān)斷機(jī)理與關(guān)斷時(shí)間研究[J];物理學(xué)報(bào);2013年05期
6 劉健;尹項(xiàng)根;張哲;熊卿;王存平;張斌;;高壓大功率三電平逆變器主電路改進(jìn)與脈寬調(diào)制安全穩(wěn)定關(guān)鍵技術(shù)[J];電工技術(shù)學(xué)報(bào);2012年08期
7 宋文祥;張旭;;基于電流矢量的三電平逆變器死區(qū)和管壓降補(bǔ)償策略[J];電工電能新技術(shù);2012年02期
8 龐輝;溫家良;賀之淵;湯廣福;;大功率IGBT串聯(lián)電壓不平衡機(jī)制研究[J];中國電機(jī)工程學(xué)報(bào);2011年21期
9 姜棟棟;王燁;盧峰;;IGBT過電壓產(chǎn)生機(jī)理分析及RC緩沖電路的設(shè)計(jì)[J];電力科學(xué)與工程;2011年04期
10 景巍;譚國俊;葉宗彬;;大功率三電平變頻器損耗計(jì)算及散熱分析[J];電工技術(shù)學(xué)報(bào);2011年02期
,本文編號(hào):2061059
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/2061059.html