方型鋰電池卷繞系統(tǒng)糾偏控制算法的研究與實(shí)現(xiàn)
本文選題:鋰離子電池 + 卷繞機(jī)。 參考:《深圳大學(xué)》2017年碩士論文
【摘要】:隨著鋰離子電池使用率不斷提高,其市場需求量飛速增漲,因此對鋰離子電池的產(chǎn)能和產(chǎn)品質(zhì)量的要求也不斷提升。鋰電池電芯卷繞機(jī)負(fù)責(zé)完成鋰離子電池芯體卷繞這個(gè)關(guān)鍵生產(chǎn)工藝,其工藝質(zhì)量與鋰電池產(chǎn)品品質(zhì)直接掛鉤。國內(nèi)鋰電池卷繞機(jī)相關(guān)技術(shù)起步較晚,主要通過采購引入國外先進(jìn)設(shè)備,價(jià)格較高且無自主產(chǎn)權(quán)。因此,為提高鋰離子電池的生產(chǎn)技術(shù),設(shè)計(jì)一款性能優(yōu)異、價(jià)格合理的鋰電池生產(chǎn)設(shè)備,有利于改善現(xiàn)階段國內(nèi)鋰電產(chǎn)業(yè)結(jié)構(gòu),具有重大的實(shí)際意義。本課題從方型鋰電池卷繞機(jī)糾偏控制這一關(guān)鍵技術(shù)著手,通過分析偏移量產(chǎn)生機(jī)理,構(gòu)建多級糾偏控制系統(tǒng)理論模型,根據(jù)糾偏控制任務(wù)和特點(diǎn)設(shè)計(jì)控制器硬件和軟件,在單級糾偏控制中提出優(yōu)于傳統(tǒng)方法的新糾偏控制方案,并將同步控制策略應(yīng)用到多級糾偏控制中,最終通過仿真驗(yàn)證糾偏控制效果。首先,對卷繞機(jī)糾偏控制系統(tǒng)建模。分析糾偏控制系統(tǒng)結(jié)構(gòu),介紹偏移量產(chǎn)生的原因,對各糾偏執(zhí)行機(jī)構(gòu)進(jìn)行理論建模,最終得出糾偏控制系統(tǒng)的整體模型。其次,為滿足糾偏控制系統(tǒng)需求,設(shè)計(jì)出對應(yīng)控制器所需的硬件電路及軟件,并通過調(diào)試實(shí)現(xiàn)糾偏控制器各模塊功能。再次,針對單級糾偏控制,研究與改進(jìn)卷繞系統(tǒng)糾偏控制策略。將模糊PID控制運(yùn)用到單級糾偏控制中,通過分析常規(guī)PID控制在糾偏控制中的效果,確定模糊控制規(guī)則,運(yùn)用仿真工具建立理論模型,驗(yàn)證了模糊PID控制在單級糾偏控制中的性能。最后,基于常規(guī)多級糾偏控制方法的不足,提出同步糾偏控制策略。通過仿真對比了幾種常用同步控制策略在多級糾偏控制系統(tǒng)中的控制效果,選擇同步性最好的交叉耦合同步控制方式,在MATLAB/Simulink平臺上建立糾偏控制系統(tǒng)模型,通過對比實(shí)際多級糾偏控制,驗(yàn)證了同步糾偏控制策略具有更好地控制效果。
[Abstract]:With the increasing utilization rate of lithium-ion batteries, the market demand is increasing rapidly, so the requirements for the production capacity and product quality of lithium-ion batteries are also increasing. Lithium battery coiling machine is responsible for completing the key production process of lithium ion battery core winding, and its process quality is directly linked to the quality of lithium battery products. Domestic lithium battery winding machine technology started late, mainly through the procurement of foreign advanced equipment, high prices and no independent property rights. Therefore, in order to improve the production technology of lithium ion battery, it is of great practical significance to design a lithium battery production equipment with excellent performance and reasonable price. This subject starts with the key technology of rectifying deviation control of square lithium battery winding machine. By analyzing the mechanism of offset generation, the theoretical model of multistage rectifying control system is constructed, and the hardware and software of controller are designed according to the task and characteristics of rectifying control. A new control scheme, which is superior to the traditional method, is put forward in the single-stage error correction control, and the synchronous control strategy is applied to the multi-stage correction control. Finally, the effect of the correction control is verified by simulation. Firstly, the control system of winding machine is modeled. This paper analyzes the structure of rectifying control system, introduces the causes of offset, and models the mechanism of rectifying deviation in theory. Finally, the overall model of rectifying control system is obtained. Secondly, in order to meet the demand of the rectifying control system, the hardware circuit and software of the corresponding controller are designed, and the function of each module of the controller is realized by debugging. Thirdly, the control strategy of winding system is studied and improved for single-stage deviation correction control. The fuzzy pid control is applied to the single-stage rectifying control. By analyzing the effect of the conventional pid control in the rectifying control, the fuzzy control rules are determined, and the theoretical model is established by using the simulation tools. The performance of fuzzy pid control in single stage correction control is verified. Finally, based on the shortcomings of the conventional multilevel error correction control method, a synchronous correction control strategy is proposed. This paper compares the control effect of several common synchronous control strategies in multistage rectifying control system, chooses the best synchronous cross-coupling synchronous control method, and establishes the system model of rectifying control system on MATLAB / Simulink platform. By comparing with the actual multilevel correction control, it is proved that the synchronous correction control strategy has better control effect.
【學(xué)位授予單位】:深圳大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TP273;TM912
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 陳登峰;吳戰(zhàn)國;;多電機(jī)同步控制研究[J];機(jī)電一體化;2014年07期
2 何曉東;史耀耀;秦現(xiàn)生;;復(fù)合材料布帶纏繞糾偏模糊控制技術(shù)研究[J];西北工業(yè)大學(xué)學(xué)報(bào);2014年03期
3 李煒;公茂利;毛海杰;龔建興;;升降舞臺系統(tǒng)中多電機(jī)同步控制方法[J];蘭州理工大學(xué)學(xué)報(bào);2014年02期
4 ;Deviation Prevention Ability of Rollers in Continuous Annealing Furnace and Application[J];Journal of Iron and Steel Research(International);2012年12期
5 王順杰;王潤田;;在線自適應(yīng)模糊PID控制器的設(shè)計(jì)與仿真[J];化工自動(dòng)化及儀表;2012年08期
6 張小鳴;龍仕玉;;基于DSP他勵(lì)直流電機(jī)模糊PID控制器仿真研究[J];常州大學(xué)學(xué)報(bào)(自然科學(xué)版);2012年01期
7 段五星;張新政;;參數(shù)自整定模糊PID控制器的設(shè)計(jì)與仿真[J];五邑大學(xué)學(xué)報(bào)(自然科學(xué)版);2011年03期
8 楊晨娜;;多電機(jī)同步控制方式的研究[J];知識經(jīng)濟(jì);2011年12期
9 李健;王冬青;王麗美;;模糊PID控制器設(shè)計(jì)及MATLAB仿真[J];工業(yè)控制計(jì)算機(jī);2011年05期
10 王玉德;韓秀清;;模糊PID控制器的設(shè)計(jì)與仿真研究[J];電子技術(shù);2011年01期
,本文編號:2041532
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/2041532.html