天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 電氣論文 >

基于非離子水性聚氨酯的固態(tài)電解質(zhì)的制備與性能

發(fā)布時間:2018-06-19 02:29

  本文選題:非離子型水性聚氨酯 + LiClO_4含量 ; 參考:《安徽大學(xué)》2016年碩士論文


【摘要】:自新興產(chǎn)業(yè)迅速發(fā)展以來,鋰離子電池因具有工作電壓高、放電平穩(wěn)、循環(huán)壽命長、能量密度大、綠色環(huán)保等優(yōu)點在電源應(yīng)用領(lǐng)域受到了廣泛的廣闊。在鋰離子電池中,與傳統(tǒng)的液態(tài)電解質(zhì)相比,固態(tài)聚合物電解質(zhì)(SPE)具有質(zhì)輕、易成膜、黏彈性好、使用安全等特點,不僅解決了鋰電池在工作中漏液、熱分解問題,而且具有優(yōu)良的熱穩(wěn)定性和機械性能,因此,它成為了鋰電池電解質(zhì)的重點發(fā)展對象。水性聚氨酯(WPU)是一種綠色環(huán)保、結(jié)構(gòu)可調(diào)且在水中分散性好的大分子材料,尤其是非離子型WPU (NPU)因具有生物相容性好、耐電解質(zhì)等特點而被廣泛應(yīng)用。聚氧化乙烯(PEO)與鋰鹽的“絡(luò)合-解離”作用實現(xiàn)了Li+在PEO基聚合物電解質(zhì)中的遷移,增加SPE的離子電導(dǎo)率。但是目前PEO基SPE存在低溫結(jié)晶度高,電導(dǎo)率低和力學(xué)強度小等問題。將PEO通過共價鍵引入到NPU中,不僅可以提高SPE的低溫離子傳導(dǎo)性,而且力學(xué)強度也得到了改善。本文將EO鏈段引入到NPU中,并以NPU為聚合物基體,制備了不同系列固態(tài)電解質(zhì),并探討了鋰鹽含量和聚氨酯結(jié)構(gòu)對固態(tài)電解質(zhì)性能的影響。本文主要分為四個章節(jié):(1)不同LiClO4含量對固態(tài)電解質(zhì)性能的影響本章首先以異佛爾酮二異氰酸酯(IPDI)、聚環(huán)氧丙烷二元醇(N 220)、三羥甲基丙烷聚乙二醇單甲醚(Ymer N-120)、1,4-丁二醇(BDO)為原料,合成了非離子型水性聚氨酯乳液,并以此為聚合物基體,添加LiClO4制備了固態(tài)聚合物電解質(zhì)。采用傅里葉轉(zhuǎn)變紅外光譜(FT-IR)、動態(tài)熱力學(xué)分析(DMA)、熱重分析(TGA)、力學(xué)性能分析、電化學(xué)工作站等測試方法,通過改變LiClO4含量,探討了其對固態(tài)電解質(zhì)性能的影響。結(jié)果表明,隨著LiClO4含量的增加,固態(tài)電解質(zhì)膜的耐熱性能有所降低;電解質(zhì)膠膜的拉伸強度逐漸增大,而斷裂伸長率則降低,當(dāng)LiClO4含量為18%時,電解質(zhì)膜的拉伸強度達到18.2 MPa;固態(tài)電解質(zhì)的離子電導(dǎo)率隨著溫度升高逐漸升高,并符合Arrhenius方程。相同溫度下,電解質(zhì)的離子電導(dǎo)率隨著LiCO4含量增加呈現(xiàn)先增加后減小的趨勢,當(dāng)LiCO4含量為15%時,電解質(zhì)的離子電導(dǎo)率達到最大,值為9.55×10-6S/cm。(2)不同聚氨酯硬段含量對固態(tài)電解質(zhì)性能的影響本章首先以異佛爾酮二異氰酸酯(IPDI)、聚環(huán)氧丙烷二元醇(N 220)、三羥甲基丙烷聚乙二醇單甲醚(Ymer N-120)、1,4-丁二醇(BDO)為原料,合成了非離子型水性聚氨酯乳液,并以此為聚合物基體,制備了固態(tài)聚合物電解質(zhì)。采用傅里葉轉(zhuǎn)變紅外光譜(FT-IR)、動態(tài)熱力學(xué)分析(DMA)、熱重分析(TGA)、力學(xué)性能分析、電化學(xué)工作站等測試方法,通過改變聚氨酯的硬段含量,探討了其對固態(tài)電解質(zhì)性能的影響。結(jié)果表明,隨著聚氨酯硬段含量的升高,固態(tài)電解質(zhì)的耐熱性能逐漸下降;電解質(zhì)膠膜的拉伸強度逐漸增大,而斷裂伸長率則降低,當(dāng)硬段含量為44.81% 時,電解質(zhì)膜的拉伸強度達到18.6MPa;該系列固態(tài)電解質(zhì)的離子電導(dǎo)率隨著溫度升高逐漸升高,并符合Arrhenius方程,相同溫度下,電解質(zhì)的離子電導(dǎo)率隨著聚氨酯硬段含量的增加呈現(xiàn)先增加后減小的趨勢;當(dāng)硬段含量為38.28%時,電解質(zhì)的離子電導(dǎo)率達到最大,值為1.55×10-5S/cm。(3)不同Ymer N-120含量對固態(tài)電解質(zhì)性能的影響本章首先以異佛爾酮二異氰酸酯(IPDI)、聚環(huán)氧丙烷二元醇(N 220)、三羥甲基丙烷聚乙二醇單甲醚(Ymer N-120)、1,4-丁二醇(BDO)為原料,合成了非離子型水性聚氨酯乳液,并以此為聚合物基體,添加LiC104制備了固態(tài)聚合物電解質(zhì)。采用傅里葉轉(zhuǎn)變紅外光譜(FT-IR)、示差掃描量熱法(DSC)、熱重分析(TGA)、力學(xué)性能分析、電化學(xué)工作站等測試方法,通過改變Ymer N-120含量,探討了其對固態(tài)電解質(zhì)性能的影響。結(jié)果表明,隨著Ymer N-120含量的增加,電解質(zhì)的玻璃化轉(zhuǎn)變溫度有所降低;膜的拉伸強度減小,而斷裂伸長率升高。紅外分峰結(jié)果顯示,室溫下,Li+主要以Li+ClO4-離子對的形式存在,自由鋰離子占有比例較少;隨著Ymer N-120含量的增加,與Li+絡(luò)合的C—O—C數(shù)量先增加后減小,當(dāng)Ymer N-120含量為24.88%時,自由的Li+最多,占總離子數(shù)的24.35%,并且Li+與C—O—C絡(luò)合的峰面積最大,為92.07%。該固態(tài)電解質(zhì)離子電導(dǎo)率隨著溫度的升高逐漸升高,并符合Arrhenius方程。相同溫度下,電解質(zhì)的離子電導(dǎo)率隨著Ymer N-120含量增加呈現(xiàn)先增加后減小的趨勢,當(dāng)Ymer N-120含量為24.88%時,電解質(zhì)離子電導(dǎo)率達到最大值(2.44×10-5S/cm)。(4)鋰離子電池的組裝工藝和電化學(xué)性能研究本章選取前三章中離子電導(dǎo)率最高的三種固態(tài)電解質(zhì)(SPE5、SPE9、SPE15),分別以Li/電解質(zhì)/不銹鋼片和Li/電解質(zhì)/Li體系組裝了扣式模型電池,綜述了電池的裝配流程并研究對比了三種固態(tài)電解質(zhì)的電化學(xué)穩(wěn)定性和離子遷移數(shù)。結(jié)果發(fā)現(xiàn),SPE15的電化學(xué)穩(wěn)定性(分解電壓為4.7 V)優(yōu)于SPE9(分解電壓為4.5 V)、SPE5(分解電壓為4.2 V),而且SPE15的離子遷移數(shù)為0.40,均大于SPE9 (0.34)、SPE5 (0.30)。
[Abstract]:Since the rapid development of new industry, lithium ion batteries have been widely used in power applications because of their high working voltage, smooth discharge, long cycle life, high energy density, green environmental protection and so on. In lithium ion batteries, the solid polymer electrolyte (SPE) is light, easy to film and sticky compared with the traditional liquid electrolyte. With good elasticity and safety, it not only solves the problem of leakage and thermal decomposition in the work of lithium battery, but also has excellent thermal stability and mechanical properties. Therefore, it has become the key development object of lithium battery electrolyte. WPU is a kind of large molecular material with green ring protection, adjustable structure and good dispersion in water. The non ionic WPU (NPU) is widely used because of its good biocompatibility and electrolyte resistance. The "complexing dissociation" effect of polyoxyethylene (PEO) and lithium salts has realized the migration of Li+ in PEO based polymer electrolytes and increased the ionic conductivity of SPE. However, there are high cryogenic crystallinity, low conductivity and Mechanical properties of PEO based SPE before the eyes. The introduction of PEO through covalent bond into NPU can not only improve the conductivity of the low temperature ion of SPE, but also improve the mechanical strength. In this paper, the EO chain is introduced into NPU, and the different series of solid electrolytes are prepared with NPU as the polymer matrix, and the content of lithium salt and the structure of the polyurethane structure to the solid electrolyte are also discussed. The influence of the performance is divided into four chapters: (1) the effects of different LiClO4 content on the properties of solid electrolytes in this chapter are first synthesized by isophorone diisocyanate (IPDI), polyepoxide propane diol (N 220), three hydroxymethylpropane propane polyethylene glycol monomethyl ether (Ymer N-120) and 1,4- butanediol (BDO) as raw materials. Ester emulsion was used as the polymer matrix and the solid polymer electrolyte was prepared by adding LiClO4. Fourier transform infrared spectroscopy (FT-IR), dynamic thermodynamic analysis (DMA), thermogravimetric analysis (TGA), mechanical properties analysis, electrochemical workstation and other testing methods were used. The effect of LiClO4 content on the properties of solid electrolyte was discussed. The results showed that with the increase of LiClO4 content, the heat resistance of the solid electrolyte membrane decreased, the tensile strength of the electrolyte film increased gradually and the elongation at break decreased. When the content of LiClO4 was 18%, the tensile strength of the electrolyte membrane reached 18.2 MPa, and the ionic conductivity of the solid electrolyte increased gradually with the increase of temperature, and was consistent with the temperature. Arrhenius equation. At the same temperature, the ionic conductivity of electrolyte increases first and then decreases with the increase of LiCO4 content. When the content of LiCO4 is 15%, the ionic conductivity of the electrolyte reaches the maximum. The value of the electrolyte is 9.55 x 10-6S/cm. (2) and the content of different polyurethane hard segments has an effect on the solid state electrosolution properties. This chapter is first with isophorone two. Cyanate (IPDI), polyepoxide propane diol (N 220), three hydroxymethyl propane polyethylene glycol monomethyl ether (Ymer N-120) and 1,4- butanediol (BDO) were used as raw materials to synthesize a nonionic waterborne polyurethane emulsion, which was used as a polymer matrix to prepare solid polymer electrosolution. Fourier transform infrared spectroscopy (FT-IR) and dynamic thermodynamic analysis (DMA) were used. The results show that the heat resistance of the solid electrolyte decreases with the increase of the content of the hard segment of the polyurethane, and the tensile strength of the electrolyte film increases gradually, and the tensile strength of the electrolyte film is gradually increased with the increase of the hard segment content of the polyurethane, and the results show that the strength of the solid electrolyte decreases gradually with the increase of the hard segment content of the polyurethane. The elongation at break decreased, when the hard segment content was 44.81%, the tensile strength of the electrolyte membrane reached 18.6MPa, and the ionic conductivity of this series of solid electrolyte increased gradually with the increase of temperature, and conformed to the Arrhenius equation. At the same temperature, the ionic conductivity of the electrolyte increased first and then decreased with the increase of the content of the hard segment of the polyurethane. When the content of the hard segment is 38.28%, the ionic conductivity of the electrolyte reaches the maximum, the value is 1.55 x 10-5S/cm. (3) different Ymer N-120 content to the solid electrolyte performance. This chapter first is isophorone diisocyanate (IPDI), polyepoxide propane diol (N 220), three hydroxymethyl propane polyethylene glycol monomethyl ether (Ymer N-120), 1,4- butyl The non ionic waterborne polyurethane emulsion was synthesized from BDO as the raw material. The polymer electrolyte was prepared by using LiC104 as the polymer matrix, and the solid polymer electrolyte was prepared by adding the Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), force performance analysis, electrochemical workstation and other testing methods, by changing Ymer N-120. The results showed that the glass transition temperature of the electrolyte decreased with the increase of Ymer N-120 content, the tensile strength of the membrane decreased and the elongation at break increased. The result of infrared peaks showed that at room temperature, Li+ was mainly in the form of Li+ClO4- ion pair, free lithium ion occupied. As the content of Ymer N-120 increases, the number of C - O - C complex with Li+ increases first and then decreases. When the content of Ymer N-120 is 24.88%, the free Li+ is the most, accounting for 24.35% of the total number of ions, and the peak area of the complex of Li+ and C O is the largest, and the electrical conductivity of the solid electrolysis increases gradually with the increase of temperature. In accordance with the Arrhenius equation, the ionic conductivity of electrolyte increases first and then decreases with the increase of Ymer N-120 content. When the content of Ymer N-120 is 24.88%, the electrolyte ionic conductivity reaches the maximum value (2.44 x 10-5S/cm). (4) the assembly process and electrochemical properties of lithium ion batteries are selected in the first three chapters. Three kinds of solid electrolytes with the highest electrical conductivity (SPE5, SPE9, SPE15) were assembled with Li/ electrolyte / stainless steel sheet and Li/ electrolyte /Li system respectively. The assembly process of the batteries was reviewed and the electrochemical stability and the migration number of the three kinds of solid electrolytes were compared and compared. The results showed that the electrochemical stability of SPE15 was found. The solution voltage is 4.7 V) is superior to SPE9 (decomposition voltage 4.5 V), SPE5 (decomposition voltage is 4.2 V), and SPE15 ion migration number is 0.40, which is greater than SPE9 (0.34) and SPE5 (0.30).
【學(xué)位授予單位】:安徽大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2016
【分類號】:TM912;TQ317

【參考文獻】

相關(guān)期刊論文 前10條

1 胡楊飛;王德海;杜治波;肖圣威;蔣仕強;;非離子型水性聚氨酯的制備及其涂膜表面性質(zhì)研究[J];涂料工業(yè);2014年09期

2 駱偉新;劉煜平;楊樹顏;劉治猛;;新型梳狀聚甲基丙烯酸酯固態(tài)聚合物電解質(zhì)的制備及導(dǎo)電性能研究[J];高分子學(xué)報;2014年01期

3 楊建軍;張建安;吳慶云;吳明元;;合成革用水性聚氨酯樹脂的改性研究進展[J];精細(xì)化工;2013年03期

4 王玲;高朋召;李冬云;黃詩婷;肖漢寧;;鋰離子電池正極材料的研究進展[J];硅酸鹽通報;2013年01期

5 趙錦成;楊固長;劉效疆;崔益秀;;鋰離子電池隔膜的研究概述[J];材料導(dǎo)報;2012年S2期

6 陸金昌;李仙會;歐朝霞;陳麒;;陽離子水性聚氨酯乳液的合成及性能[J];高分子材料科學(xué)與工程;2012年03期

7 方舟;周萌;仲建峰;董擎之;;改性陽離子水性聚氨酯的合成與性能研究[J];石油化工技術(shù)與經(jīng)濟;2012年01期

8 黃樂之;溫兆銀;靳俊;劉宇;;鋰離子電池PEO-LATP/LAGP陶瓷復(fù)合電解質(zhì)膜的制備與性能表征[J];無機材料學(xué)報;2012年03期

9 饒舟;戴震;王煥;許戈文;;丙烯酸酯改性非離子型水性聚氨酯的合成及性能[J];涂料工業(yè);2012年01期

10 張海龍;楊偉平;黃毅萍;許戈文;;新型非離子水性聚氨酯的制備及性能研究[J];涂料工業(yè);2011年06期

相關(guān)博士學(xué)位論文 前1條

1 王秋君;鋰離子電池聚合物電解質(zhì)的合成及性能研究[D];北京科技大學(xué);2015年

相關(guān)碩士學(xué)位論文 前1條

1 劉亞敬;鋰離子電池用PEG基聚合物電解質(zhì)的制備及其研究[D];湖北大學(xué);2013年

,

本文編號:2037957

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/2037957.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶3e478***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com