天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 科技論文 > 電氣論文 >

基于共軛梯度法的瞬態(tài)多參量導(dǎo)熱反問(wèn)題研究及在核電中的應(yīng)用

發(fā)布時(shí)間:2018-06-18 12:14

  本文選題:共軛梯度法 + 有限單元法。 參考:《北京化工大學(xué)》2017年博士論文


【摘要】:隨著社會(huì)經(jīng)濟(jì)的發(fā)展我國(guó)能源需求日益增長(zhǎng),核電作為一種高效清潔能源正蓬勃發(fā)展起來(lái),而核安全也成為人們關(guān)注的話題。在核電的諸多管道中,經(jīng)常會(huì)遇到冷熱流體匯合、熱分層等溫度波動(dòng)情況。管道內(nèi)溫度波動(dòng)可能誘發(fā)管道發(fā)生熱疲勞失效,導(dǎo)致核電管道發(fā)生泄漏。以波動(dòng)管熱分層為例,包括中國(guó)在內(nèi)的核電國(guó)家,無(wú)論是在役,還是擬建的核電站都必須完成波動(dòng)管熱分層分析與危害評(píng)估,足以看出熱分層誘發(fā)管道熱疲勞失效的重要性。由于結(jié)構(gòu)完備性要求,對(duì)于核電的管道系統(tǒng),不允許在管道內(nèi)部或者壁面開(kāi)孔來(lái)安裝熱電偶測(cè)量流體溫度和內(nèi)壁面溫度,這需要探索一種間接無(wú)損的溫度測(cè)量或評(píng)估方法來(lái)獲得管道內(nèi)流體和內(nèi)壁面溫度。本文提出瞬態(tài)多參量導(dǎo)熱反問(wèn)題(Transient Inverse Heat Conduction Problem with Multi-variables)來(lái)預(yù)測(cè)核電典型管道溫度波動(dòng)現(xiàn)象,亦即利用易于測(cè)量的管道外壁面溫度,通過(guò)共軛梯度法對(duì)圓管的近壁面流體溫度、內(nèi)壁面溫度及內(nèi)壁面對(duì)流換熱系數(shù)進(jìn)行反演,同時(shí)還可獲得整個(gè)管道的瞬時(shí)溫度場(chǎng)。本文主要在以下幾個(gè)方面開(kāi)展研究:(1)二維和三維圓管導(dǎo)熱正問(wèn)題與瞬態(tài)多參量導(dǎo)熱反問(wèn)題研究。構(gòu)建了基于有限元法的二維和三維圓管的導(dǎo)熱正問(wèn)題求解模型,進(jìn)行了網(wǎng)格無(wú)關(guān)性驗(yàn)證及時(shí)間步長(zhǎng)敏感性分析,為反問(wèn)題實(shí)驗(yàn)臺(tái)的測(cè)點(diǎn)布置方案及溫度采集頻率的確定提供了理論依據(jù)。構(gòu)建了基于共軛梯度法的瞬態(tài)多參量導(dǎo)熱反問(wèn)題模型,給出了利用外壁面測(cè)量溫度反演內(nèi)壁面第三類邊界條件的具體實(shí)施步驟。(2)瞬態(tài)多參量導(dǎo)熱反問(wèn)題實(shí)驗(yàn)校驗(yàn)及結(jié)果分析。搭建了基于熱分層原理的導(dǎo)熱反問(wèn)題實(shí)驗(yàn)臺(tái),進(jìn)行了導(dǎo)熱反問(wèn)題實(shí)驗(yàn)。研究利用實(shí)驗(yàn)結(jié)果對(duì)二維和三維導(dǎo)熱反問(wèn)題模型及反演結(jié)果進(jìn)行了校驗(yàn);谛r(yàn)過(guò)的導(dǎo)熱反問(wèn)題模型,研究了測(cè)點(diǎn)數(shù)對(duì)反演精度的影響,研究結(jié)果表明測(cè)點(diǎn)數(shù)越多,反演精度越高。當(dāng)二維導(dǎo)熱反問(wèn)題測(cè)點(diǎn)數(shù)降低到2個(gè)時(shí),平均相對(duì)誤差不超過(guò)4.3%,三維導(dǎo)熱反問(wèn)題測(cè)點(diǎn)數(shù)降低到6個(gè)時(shí),平均相對(duì)誤差不超過(guò)6.8%。從導(dǎo)熱反問(wèn)題實(shí)驗(yàn)結(jié)果及反演結(jié)果可以看出:管道內(nèi)壁各測(cè)點(diǎn)處的熱邊界層厚度隨冷水流量的增大呈現(xiàn)出不同的變化規(guī)律,多數(shù)測(cè)點(diǎn)處的熱邊界層厚度隨冷水流量的增大而變厚;反演的對(duì)流換熱系數(shù)值隨冷水流量的增大而略有增大;管壁的溫度分布規(guī)律也隨冷水流量的變化而發(fā)生明顯改變。(3)二維瞬態(tài)多參量導(dǎo)熱反問(wèn)題反演波動(dòng)管內(nèi)壁面第三類邊界條件。利用已校驗(yàn)的二維瞬態(tài)多參量導(dǎo)熱反問(wèn)題模型對(duì)核電穩(wěn)壓器波動(dòng)管4個(gè)沿管道軸線的易發(fā)生熱分層現(xiàn)象的典型截面進(jìn)行了反演。從計(jì)算結(jié)果中可以明顯看出截面所處位置的不同,其溫度場(chǎng)分布規(guī)律不同。24D和27D截面的壁面溫度最高點(diǎn)位于管道頂部,溫度最低點(diǎn)位于管道底部,而20D和22D管壁溫度最高點(diǎn)位置向右發(fā)生了偏移。這是由于管道的幾何特征致使流體流動(dòng)方向改變?cè)斐傻。另?四個(gè)截面得出的對(duì)流換熱系數(shù)也不盡相同,處于彎管處的截面,其對(duì)流換熱系數(shù)較大,但四個(gè)截面的對(duì)流換熱系數(shù)值相差不大,這也說(shuō)明了三維導(dǎo)熱反問(wèn)題中求解平均對(duì)流換熱系數(shù)的可行性。(4)熱分層三維彎管正問(wèn)題數(shù)值試驗(yàn)及反問(wèn)題結(jié)果分析。對(duì)存在熱分層現(xiàn)象的三維彎管進(jìn)行了瞬態(tài)導(dǎo)熱正問(wèn)題及多參量導(dǎo)熱反問(wèn)題研究,由抗噪性和外壁面測(cè)點(diǎn)數(shù)討論得知,存在一定的“測(cè)量”誤差時(shí),該方法仍可以得到一定精度的反演結(jié)果,彎管拐角區(qū)域的測(cè)點(diǎn)數(shù)對(duì)反演精度影響較大,該區(qū)域的測(cè)點(diǎn)數(shù)越多,反演精度越高,其他區(qū)域的測(cè)點(diǎn)數(shù)對(duì)反演精度的影響較小。(5)三維瞬態(tài)多參量導(dǎo)熱反問(wèn)題反演熱分層T型彎管溫度分布。利用已校驗(yàn)的三維瞬態(tài)多參量導(dǎo)熱反問(wèn)題模型對(duì)存在有熱分層的T型彎管的彎管段進(jìn)行了反演,揭示了在湍流穿透和浮升力作用下管壁及近壁面流體在不同時(shí)刻的溫度分布規(guī)律。本文所提出的一種多參量、無(wú)損、間接的溫度反演方法,利用外壁面的溫度信息同時(shí)求解管道內(nèi)壁第三類邊界條件的多個(gè)參量。經(jīng)實(shí)驗(yàn)校驗(yàn),此方法具有較高的精度。瞬態(tài)多參量導(dǎo)熱反問(wèn)題得到的結(jié)果不僅可為管道內(nèi)部流場(chǎng)的分析提供準(zhǔn)確的內(nèi)壁面邊界條件,而且可為管道的應(yīng)力分析提供準(zhǔn)確的瞬時(shí)熱載荷。對(duì)于核電等結(jié)構(gòu)完備性要求較高的管道系統(tǒng),此方法可以為其流場(chǎng)分析以及熱疲勞分析提供可靠的理論依據(jù)。
[Abstract]:With the development of social and economic development, nuclear power is developing vigorously as a kind of efficient clean energy, and nuclear safety has become a topic of concern. In many pipelines of nuclear power, there are often cold and hot fluid convergence, thermal stratification and other temperature fluctuations. The temperature fluctuation within the pipeline may induce pipelines to occur. Thermal fatigue failure causes leakage of nuclear power pipelines. Taking the thermal stratification of the wave tube as an example, the nuclear power countries including China, whether in service or in the proposed nuclear power plant, must complete the analysis of the thermal stratification and hazard assessment of the undulate tube, which is sufficient to see the importance of the thermal fatigue failure of the pipeline caused by thermal stratification. The pipeline system of nuclear power does not allow the internal or wall opening of the pipe to install the thermocouple to measure the temperature of the fluid and the inner wall temperature. This needs to explore an indirect and nondestructive temperature measurement or evaluation method to obtain the internal and internal temperature in the pipe. This paper proposes a transient multi parameter heat conduction inverse problem (Transient Inverse Heat Conducti). On Problem with Multi-variables) is used to predict the temperature fluctuation in the typical pipeline of nuclear power, that is to use the easily measured temperature of the outer wall of the pipe, the inversion of the near wall fluid temperature, the inner wall temperature and the inner wall facing the flow heat transfer coefficient by the conjugate gradient method, and the instantaneous temperature field of the whole pipe can be obtained at the same time. The following research should be carried out in the following aspects: (1) research on the positive and transient heat conduction problems of two-dimensional and three-dimensional tubes and transient multiparametric heat conduction problems. A finite element method for solving the positive problem of heat conduction in two-dimensional and three-dimensional tubes is constructed, and the grid independence verification and time step sensitivity analysis are carried out for the layout of the test point of the inverse problem test bench. A theoretical basis is provided for the determination of the frequency of temperature collection. A transient multi parameter heat conduction inverse problem model based on conjugate gradient method is constructed, and the concrete implementation steps for the inversion of third kinds of boundary conditions on the inner wall surface using the measuring temperature of the outer wall are given. (2) the test of the transient multi parameter heat conduction experiment and the result analysis. The experiment on the inverse heat conduction problem of the stratified principle is carried out. The experimental results are used to verify the inverse heat conduction problem model and the inverse result of the two-dimensional and three-dimensional heat conduction. Based on the checked heat conduction inverse problem model, the influence of the number of measured points on the inversion accuracy is studied. The results show that the number of points is more, the more accurate the inversion is. When the number of two dimensional heat conduction inverse problems is reduced to 2, the average relative error is not more than 4.3%, and the number of three dimensional heat conduction inverse problem points is reduced to 6. The average relative error is not more than 6.8%. from the experimental results of the heat conduction inverse problem and the inversion results can be seen that the thickness of the thermal boundary layer at the inner wall of the pipeline increases with the increase of the cold water flow. The thermal boundary layer thickness at most of the test points thickens with the increase of cold water flow. The numerical value of the inverse heat transfer system increases slightly with the increase of cold water flow, and the temperature distribution of the tube wall changes obviously with the change of the cold water flow. (3) the inversion of the two-dimensional transient multi parameter heat conduction inverse problem is in the wave tube. The third type boundary condition of the wall surface is used to inverse the typical cross section of the thermal delamination phenomenon of the nuclear power regulator's wave tube along the axis of the nuclear power regulator, using the checked two-dimensional transient multi parameter heat conduction inverse problem model. From the calculation results, it is obvious that the location of the section is different, and the distribution of temperature field is different.24D and 27D intercepts. The highest point of surface temperature is located at the top of the pipe, and the lowest temperature is located at the bottom of the pipe, while the position of the highest temperature of 20D and 22D is shifted to the right. This is caused by the change of the flow direction of the pipe because of the geometric characteristics of the pipe. In addition, the convection heat transfer coefficient of the four cross sections is not the same, at the bend of the pipe. The convective heat transfer coefficient is large, but the difference in the numerical value of the convective heat transfer system in the four cross sections is not significant. It also shows the feasibility of solving the average convection heat transfer coefficient in the three-dimensional heat conduction inverse problem. (4) the numerical test of the positive problem of the thermal stratified three-dimensional bend tube and the analysis of the inverse problem results. The problem and the inverse problem of multi parameter heat conduction are studied. From the discussion of the noise resistance and the number of exterior wall points, it is found that when there is a certain "measurement" error, the method can still get a certain precision of inversion results. The number of measuring points in the corner area has a great influence on the inversion accuracy, the more the number of the measured points in the region, the higher the inversion accuracy, the measurement of other regions. The number of points has little influence on the inversion accuracy. (5) the inversion of the thermal stratified T type pipe temperature distribution in the three-dimensional transient multi parameter heat conduction inverse problem. The inversion of the bend pipe section of the T type pipe with thermal stratification has been retrieved by using the checked three-dimensional transient multi parametric heat conduction inverse problem model, and the tube wall and the near wall surface under the effect of turbulent penetration and floating lift are revealed. The temperature distribution of fluid at different times. A multi parameter, nondestructive and indirect temperature inversion method proposed in this paper is used to use the temperature information of the outer wall to solve the multiple parameters of the third kinds of boundary conditions of the inner wall of the pipe. It is verified by experiments that the method has a high degree of precision. It can only provide accurate inner wall boundary conditions for the analysis of the internal flow field of the pipeline, and can provide accurate instantaneous thermal load for the stress analysis of the pipeline. This method can provide a reliable theoretical basis for the analysis of the flow field and the thermal fatigue analysis for the pipeline system with high completion of nuclear power and other structures.
【學(xué)位授予單位】:北京化工大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類號(hào)】:TK124;TM623

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 丁翠嬌;豆瑞鋒;陳超;田大鵬;郭強(qiáng);溫治;;基于二維瞬態(tài)導(dǎo)熱反問(wèn)題方法測(cè)量氣體射流沖擊換熱系數(shù)[J];冶金能源;2017年01期

2 王琳琳;盧玫;黃鑒;;基于最小二乘法預(yù)測(cè)的導(dǎo)熱反問(wèn)題求解[J];化工學(xué)報(bào);2016年S1期

3 喬慶玲;盧玫;張翠珍;陶亮;;基于動(dòng)態(tài)參數(shù)蟻群算法的尋源導(dǎo)熱反問(wèn)題研究[J];上海理工大學(xué)學(xué)報(bào);2016年02期

4 韓雯雯;吳健;劉長(zhǎng)亮;盧濤;姜培學(xué);祝銀海;;基于導(dǎo)熱反問(wèn)題的二維圓管內(nèi)壁面第三類邊界條件的反演[J];機(jī)械工程學(xué)報(bào);2015年16期

5 李博漢;盧玫;;基于相關(guān)度的蟻群優(yōu)化算法對(duì)內(nèi)熱源位置的識(shí)別[J];上海理工大學(xué)學(xué)報(bào);2015年03期

6 韓雯雯;盧濤;;基于共軛梯度法的圓管內(nèi)部流體溫度識(shí)別[J];工程熱物理學(xué)報(bào);2015年02期

7 張濤;盧玫;李博漢;陶亮;;用于尋源導(dǎo)熱反問(wèn)題的自適應(yīng)蟻群算法研究[J];應(yīng)用數(shù)學(xué)和力學(xué);2014年07期

8 陶亮;盧玫;;適用于尋源導(dǎo)熱逆問(wèn)題的混沌-蟻群算法[J];計(jì)算機(jī)工程與應(yīng)用;2015年24期

9 熊厚華;譚億平;陳志遠(yuǎn);曹健;;核電事故分析及思考[J];東華理工大學(xué)學(xué)報(bào)(自然科學(xué)版);2013年S2期

10 黃少君;盧玫;張濤;陶亮;;適用于尋源導(dǎo)熱反問(wèn)題的改進(jìn)蟻群系統(tǒng)[J];工程熱物理學(xué)報(bào);2013年04期

相關(guān)會(huì)議論文 前1條

1 馬帥;李鐵萍;張春明;劉宇生;;穩(wěn)壓器波動(dòng)管熱分層現(xiàn)象及緩解措施研究[A];中國(guó)核科學(xué)技術(shù)進(jìn)展報(bào)告(第三卷)——中國(guó)核學(xué)會(huì)2013年學(xué)術(shù)年會(huì)論文集第3冊(cè)(核能動(dòng)力分卷(下))[C];2013年

相關(guān)博士學(xué)位論文 前7條

1 羅兆明;傳熱學(xué)反問(wèn)題模糊推理方法的繼續(xù)研究[D];重慶大學(xué);2014年

2 朱麗娜;二維穩(wěn)態(tài)傳熱系統(tǒng)的模糊反演及其應(yīng)用[D];重慶大學(xué);2011年

3 王祥建;土木工程中的物理參數(shù)時(shí)域識(shí)別及地震動(dòng)反演研究[D];中國(guó)地震局工程力學(xué)研究所;2011年

4 隋大山;鑄造凝固過(guò)程熱傳導(dǎo)反問(wèn)題參數(shù)辨識(shí)技術(shù)研究[D];上海交通大學(xué);2008年

5 薛齊文;多宗量熱傳導(dǎo)反問(wèn)題的數(shù)值求解[D];大連理工大學(xué);2006年

6 袁旭東;基于不完備信息土木工程結(jié)構(gòu)損傷識(shí)別方法研究[D];大連理工大學(xué);2005年

7 王振宇;土木工程的層析成像與廣義反演研究[D];浙江大學(xué);2003年

相關(guān)碩士學(xué)位論文 前10條

1 薛亞海;基于反問(wèn)題的壁面擾流元強(qiáng)化換熱結(jié)構(gòu)優(yōu)化研究[D];河北工業(yè)大學(xué);2015年

2 翟浩;彎管熱分層及其熱波動(dòng)削弱機(jī)理研究[D];北京化工大學(xué);2014年

3 李楠;基于遺傳算法的瞬態(tài)非線性熱傳導(dǎo)反問(wèn)題研究[D];大連理工大學(xué);2014年

4 黃少君;基于蟻群算法的尋源導(dǎo)熱反問(wèn)題研究[D];上海理工大學(xué);2012年

5 董國(guó)志;反問(wèn)題的正則化方法及其計(jì)算[D];湖南師范大學(xué);2012年

6 方萍;建筑圍護(hù)材料熱導(dǎo)率反演模擬研究[D];南京航空航天大學(xué);2011年

7 劉波;導(dǎo)熱反問(wèn)題求解彎管內(nèi)壁溫度波動(dòng)的研究[D];北京化工大學(xué);2010年

8 竹勵(lì)萍;金屬型鑄造凝固過(guò)程鑄件/鑄型界面換熱系數(shù)的研究[D];天津理工大學(xué);2009年

9 李斌;導(dǎo)熱幾何反問(wèn)題的邊界元法[D];哈爾濱工業(yè)大學(xué);2008年

10 張建濤;基于紅外測(cè)溫技術(shù)的工業(yè)熱設(shè)備內(nèi)部缺陷診斷方法[D];重慶大學(xué);2008年

,

本文編號(hào):2035448

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/2035448.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶87ca6***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com