天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 電氣論文 >

含箝位電感隔離升降壓變換器電路拓?fù)浼翱刂撇呗匝芯?/H1>
發(fā)布時間:2018-06-09 21:57

  本文選題:隔離升降壓變換器 + 寬電壓范圍。 參考:《北京交通大學(xué)》2017年博士論文


【摘要】:目前,太陽能電池、燃料電池、溫差電池、蓄電池、超級電容等裝置大規(guī)模投入使用。由于各裝置端口電壓在寬范圍內(nèi)變化,對DC-DC變換器工作電壓范圍要求也逐漸增加,可實現(xiàn)寬范圍升降壓調(diào)節(jié)的變換器受到國內(nèi)外學(xué)者的關(guān)注。含箝位電感隔離升降壓(Isolated buck-boost, IBB)變換器具有輸入輸出隔離、工作電壓范圍寬、功率器件軟開關(guān)等優(yōu)點,并且此類變換器原邊、副邊電路均含開關(guān)管,箝位電感電流在兩端壓差作用下線性變化,變換器的電路拓?fù)浜涂刂撇呗跃哂卸鄻有浴1疚臄M針對IBB變換器的電路拓?fù)浼翱刂撇呗哉归_研究工作。目前已有文獻(xiàn)提出了一些IBB變換器電路拓?fù)?也有文獻(xiàn)提出了 IBB類變換器拓?fù)涞暮唵紊煞椒?但還不太完善。本文基于IBB變換器的基本結(jié)構(gòu),提出了原邊電路單元、副邊電路單元的生成規(guī)則和生成方法,并提出了 IBB變換器的生成規(guī)則。在此基礎(chǔ)上,推導(dǎo)出一系列IBB電路拓?fù)?包括單變壓器簡單電平型、單變壓器復(fù)雜電平型、雙變壓器型、雙輸入或雙輸出型IBB變換器。這些電路拓?fù)浜w了以前文獻(xiàn)所提出的各種電路拓?fù)?并得到了一些新的IBB變換器電路拓?fù)。本文還對IBB變換器的電平形式進行分類,可根據(jù)實際需要生成相應(yīng)的變換器拓?fù)?并提出了適用的控制策略。準(zhǔn)雙控全橋式IBB變換器的原邊為全橋電路,副邊為橋臂開關(guān)型全橋電路,采用原邊、副邊三個橋臂之間的雙移相控制,可以實現(xiàn)開關(guān)管的軟開關(guān)及全電壓范圍、全負(fù)載范圍的調(diào)節(jié)。為了詳細(xì)分析雙移相控制時準(zhǔn)雙控全橋式IBB變換器的工作原理,本文列舉了各工作模式,并對相應(yīng)工作區(qū)域進行劃分,繪制兩個控制量與輸出電流之間的三維圖以反映電路工作情況。在提出優(yōu)化控制策略之前,本文分析了已有控制策略的控制軌跡,并研究了不同工況下箝位電感的電流峰值與有效值關(guān)系,得出可采用箝位電感電流反映變換器效率的結(jié)論。依據(jù)電感電流峰值最小原則提出了最優(yōu)控制軌跡,并討論了準(zhǔn)雙控全橋式IBB變換器的參數(shù)設(shè)計方法,最終改善變換器的電磁兼容及輕載效率等性能。為了改善功率器件的軟開關(guān)特性并改善變換器的輕載效率,本文在定頻雙自由度控制的基礎(chǔ)上增加變頻控制,提出了變頻三自由度控制策略。基于準(zhǔn)雙控全橋式IBB變換器進行分析,通過將三個自由度轉(zhuǎn)換為兩個變量,簡化了分析復(fù)雜度。采用箝位電感電流峰值最小的原則判定最優(yōu)工作點,將變頻三自由度的最優(yōu)工作點求解問題轉(zhuǎn)換為了基于兩個分析變量的非線性最優(yōu)化問題。為了實現(xiàn)IBB變換器在全電壓范圍、全負(fù)載范圍的連續(xù)平滑調(diào)節(jié),并且限定開關(guān)頻率范圍,提出包含變頻電流臨界模式(boundary current mode, BCM)、定頻BCM模式和變頻電流斷續(xù)DCM (discontinuous current mode, DCM)三種模式的全域控制策略。此外,提出了采用變頻三自由度控制時IBB變換器的電路參數(shù)設(shè)計方法。復(fù)合式三電平全橋IBB變換器是本文提出的新IBB變換器電路拓?fù)?原邊電路單元由三電平半橋和半橋電路復(fù)合而來,可輸出五個電平幅值,副邊為橋臂開關(guān)型全橋電路。該變換器與準(zhǔn)雙控全橋式IBB變換器相比,原邊開關(guān)管數(shù)目增加,輸出電平數(shù)增加,控制自由度也增加,可以擴寬IBB變換器的電壓工作范圍,但是相應(yīng)的工作原理及控制策略有待研究。在采用定頻控制時,復(fù)合式三電平全橋IBB變換器包含了三個控制自由度,工作模式較多,分析較復(fù)雜。本文將工作模式限定為BCM模式和DCM模式,實現(xiàn)控制量縮減和分析的簡化。在此基礎(chǔ)上,依據(jù)電感電流峰值最小原則求解并提出最優(yōu)控制軌跡,當(dāng)輸入電壓或者負(fù)載發(fā)生變化時,控制變量可連續(xù)調(diào)節(jié)并維持變換器輸出電壓的恒定,拓寬了變換器高效率運行的工作電壓范圍。對于以上三種控制策略,本文分別提出相應(yīng)的閉環(huán)控制策略實現(xiàn)方法,并搭建實驗平臺進行驗證。當(dāng)輸入電壓或負(fù)載功率連續(xù)變化時,三種控制策略均可實現(xiàn)在各個工作模式間的平滑切換,可實現(xiàn)負(fù)載功率的全域調(diào)節(jié),并且在寬輸入范圍和寬負(fù)載范圍內(nèi)維持較高效率。本文還提出了各個控制策略適用的IBB變換器拓?fù)漕愋?以上控制策略均可推廣應(yīng)用于IBB變換器系列拓?fù)渲小?br/>[Abstract]:At present, solar cell, fuel cell, temperature difference battery, battery, supercapacitor and other devices are widely used. Because of the wide range of the voltage of each device's port, the demand for the operating voltage range of DC-DC converter is increasing gradually. The converter with wide range and voltage regulation can be realized by domestic and foreign scholars. The Isolated buck-boost (IBB) converter has the advantages of input and output isolation, wide operating voltage range and power device soft switch, and the original side of the converter and the secondary circuit all contain switch tubes. The clamp inductor current is linearly changed under the pressure difference at both ends. The circuit topology and control strategy of the converter have diversity. This paper intends to study the circuit topology and control strategy of the IBB converter. At present, some IBB converters have been proposed in the literature, and some documents have been proposed for the simple generation of IBB class converter topology, but it is not very perfect. Based on the basic structure of IBB converter, the original side circuit unit and the side circuit single circuit unit are proposed in this paper. The generation rules and generation methods of the element are presented, and the generation rules of IBB converters are proposed. On this basis, a series of IBB circuit topology, including single transformer simple level, single transformer complex level, dual transformer, dual input or dual output IBB converter, is introduced. These circuit topology covers the various previous documents. The topology of the circuit and some new circuit topology of the IBB converter are obtained. This paper also classifies the level form of the IBB converter. The corresponding converter topology can be generated according to the actual needs, and the applicable control strategy is put forward. The original side of the quasi double control all bridge type IBB converter is the full bridge circuit, the vice side is the bridge arm switch type full bridge circuit, and it is adopted. The dual phase shift control between the three bridge arms in the original side and the secondary side can realize the soft switch and full voltage range of the switch tube and the adjustment of the full load range. In order to analyze the working principle of the quasi double controlled full bridge IBB converter in double phase shift control, the work modes are enumerated in this paper, and the corresponding working areas are divided and two control quantities are drawn. In this paper, the control trajectory of the existing control strategy is analyzed, and the relationship between the current peak current and the effective value of the clamp inductor in different working conditions is studied. The conclusion that the clamp inductor current can be used to reflect the efficiency of the converter is obtained. The optimal control trajectory is proposed, and the parameter design method of the quasi double controlled full bridge IBB converter is discussed. The electromagnetic compatibility and the light load efficiency of the converter are improved. In order to improve the soft switching characteristics of the power device and improve the light load efficiency of the converter, this paper increases the constant frequency dual freedom control. The control strategy of frequency conversion three degrees of freedom is proposed. Based on the quasi double controlled full bridge IBB converter, the analysis complexity is simplified by converting three degrees of freedom to two variables. The optimal working point is determined by the principle of minimum current peak of the clamping inductor, and the optimal working point of the variable frequency three degrees of freedom is solved by the optimal working point. In order to solve the nonlinear optimization problem based on two analytical variables, in order to realize the continuous smooth adjustment of the full load range in the full voltage range and limit the frequency range of the switch, the IBB converter includes the frequency conversion current critical mode (boundary current mode, BCM), the fixed frequency BCM mode and the frequency conversion current intermittent DCM (discontinuous current Mo). De, DCM) the total domain control strategy of three modes. In addition, the circuit parameter design method of IBB converter is proposed with frequency conversion three degree of freedom control. The composite three level full bridge IBB converter is a new IBB converter circuit topology proposed in this paper. The original side circuit unit is composed of three level half bridge and half bridge circuit, and can output five levels. Compared with the quasi double controlled full bridge IBB converter, the converter has an increase in the number of primary side switches, the increase of the output level and the increase of control freedom, which can broaden the voltage range of the IBB converter, but the corresponding working principle and control strategy need to be studied. In the use of constant frequency control, The composite three level full bridge IBB converter contains three control degrees of freedom, more mode of work and more complex analysis. In this paper, the work mode is limited to BCM mode and DCM mode, and the reduction of control quantity and analysis is simplified. When the load changes, the control variable can continuously adjust and maintain the constant output voltage of the converter and widen the operating voltage range of the high efficiency of the converter. For the above three control strategies, the corresponding closed loop control strategy implementation method is proposed in this paper, and the experimental platform is set up to verify. When the rate is continuously changed, the three control strategies can realize the smooth switching between the various working modes, realize the full domain adjustment of the load power, and maintain high efficiency in the wide input range and wide load range. This paper also proposes the IBB converter topology type suitable for each control strategy, and the above control strategies can be extended and applied. In the IBB converter series topology.
【學(xué)位授予單位】:北京交通大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2017
【分類號】:TM46

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 江友華;方吉力;;無觸點交流調(diào)壓電路拓?fù)浼霸O(shè)計[J];上海電力學(xué)院學(xué)報;2009年04期

2 賈鵬宇;劉建強;黃堯;鄭瓊林;;基于高頻隔離的負(fù)序級聯(lián)式補償電路拓?fù)鋄J];電工技術(shù)學(xué)報;2012年03期

3 孫明;;Dual Boost PFC電路拓?fù)涞难芯縖J];通信電源技術(shù);2012年06期

4 林維明,何塞安,林慧聰;新型單相無源功率因數(shù)校正整流器的電路拓?fù)、工作原理和設(shè)計分析[J];電工技術(shù)學(xué)報;2004年01期

5 陳學(xué)清;林裕雄;黃俊來;;雙向DC-DC變換器的應(yīng)用及電路拓?fù)涓攀鯷J];大眾科技;2008年10期

6 張志學(xué);馬皓;;電力電子電路拓?fù)湎蛄康膶で骩J];中國電機工程學(xué)報;2006年20期

7 馬志瀛,鄭清水,常濤;電器設(shè)備中電路拓?fù)涔匠槿⌒路椒捌湮C實現(xiàn)[J];低壓電器;2003年01期

8 程冰;湯鈺鵬;;單相有源功率因數(shù)校正電路拓?fù)浼夹g(shù)研究進展[J];通信電源技術(shù);2006年03期

9 張志學(xué);馬皓;何湘寧;;基于殘差分析的電力電子電路拓?fù)浔孀R[J];中國電機工程學(xué)報;2006年18期

10 李艷;阮新波;楊東升;劉福鑫;;無緩沖單元的多輸入直流變換器電路拓?fù)鋄J];電工技術(shù)學(xué)報;2009年05期

相關(guān)會議論文 前3條

1 石勇;楊旭;王兆安;;開關(guān)電路拓?fù)涞木幪柋硎炯捌渫負(fù)渫蒲輀A];第二屆全國特種電源與元器件年會論文集[C];2002年

2 郎壟;林維明;徐玉珍;;雙向DC/DC變換器電路拓?fù)涞默F(xiàn)狀[A];2008中國電工技術(shù)學(xué)會電力電子學(xué)會第十一屆學(xué)術(shù)年會論文摘要集[C];2008年

3 丁力;陳艷峰;;電力電子電路拓?fù)涞淖钚¢_關(guān)單元及其應(yīng)用[A];第七屆中國高校電力電子與電力傳動學(xué)術(shù)年會論文集[C];2013年

相關(guān)博士學(xué)位論文 前4條

1 李芳;含箝位電感隔離升降壓變換器電路拓?fù)浼翱刂撇呗匝芯縖D];北京交通大學(xué);2017年

2 李艷;多輸入直流變換器電路拓?fù)浼翱刂撇呗匝芯縖D];南京航空航天大學(xué);2009年

3 郭文峰;基于三角放大箝位的壓電蠕動直線驅(qū)動器研究[D];哈爾濱工業(yè)大學(xué);2014年

4 楊兆年;CMOS工藝靜電保護電路與器件的特性分析和優(yōu)化設(shè)計[D];西安電子科技大學(xué);2015年

相關(guān)碩士學(xué)位論文 前5條

1 于帥;單相電流型全橋單級PFC變換器的多級無源輔助環(huán)節(jié)研究[D];哈爾濱工業(yè)大學(xué);2015年

2 王梟;面向RFIC的靜電防護寄生優(yōu)化設(shè)計[D];西安電子科技大學(xué);2014年

3 陳海軍;集成電路靜電保護網(wǎng)絡(luò)及器件特性研究和設(shè)計優(yōu)化[D];西安電子科技大學(xué);2015年

4 吳松榮;VRM電路拓?fù)渑c控制方法研究[D];西南交通大學(xué);2001年

5 楊潮暉;Boost-PFC電路拓?fù)浜蛿?shù)字控制的研究[D];哈爾濱工業(yè)大學(xué);2010年

,

本文編號:2000965


本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/2000965.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶57181***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com