天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 電氣論文 >

基于相變散熱的動力電池?zé)峁芾硐到y(tǒng)研究

發(fā)布時間:2018-06-07 18:27

  本文選題:鋰離子電池 + 熱管理系統(tǒng)。 參考:《中國科學(xué)技術(shù)大學(xué)》2017年碩士論文


【摘要】:近年來在環(huán)境污染和能源危機(jī)的雙重壓力下,世界各國都在大力發(fā)展新能源汽車以取代傳統(tǒng)燃油汽車,而新能源汽車發(fā)展的關(guān)鍵在于動力電池技術(shù)。目前,鋰離子電池因其性能卓越成為了動力電池的主流選擇。但是,鋰離子電池仍存在一定的安全隱患,火災(zāi)爆炸事故時有發(fā)生,嚴(yán)重制約了新能源汽車的推廣和應(yīng)用。所以,鋰離子電池的熱安全問題已經(jīng)成為了一個研究熱點(diǎn)。其中,鋰離子電池的溫度是影響其電化學(xué)性能以及安全性的關(guān)鍵因素,因此為了將鋰離子電池的溫度控制在最佳的工作溫度范圍內(nèi),亟需對動力電池?zé)峁芾硐到y(tǒng)進(jìn)行研究。本文通過實驗和模擬相結(jié)合的方法對基于相變散熱的動力電池?zé)峁芾硐到y(tǒng)進(jìn)行了研究,并提出了優(yōu)化設(shè)計的方法。本文首先對基于復(fù)合相變材料(Phase Change Material,PCM)的電池?zé)峁芾硐到y(tǒng)進(jìn)行了研究,利用石蠟和膨脹石墨制備得到復(fù)合相變材料,進(jìn)一步研究了在電池組動態(tài)循環(huán)過程中PCM熱管理系統(tǒng)的性能以及影響因素。實驗結(jié)果表明:一個充放電循環(huán)過程中單電池及自然對流散熱系統(tǒng)下電池組的溫度變化曲線中均出現(xiàn)了兩個溫度峰,而PCM熱管理系統(tǒng)中僅僅只出現(xiàn)了一個溫度峰。隨著電池充放電循環(huán)倍率的增大,PCM熱管理系統(tǒng)和自然對流散熱系統(tǒng)中電池組的最大溫升和最大溫差也明顯增大。此外,PCM熱管理系統(tǒng)的散熱能力要優(yōu)于自然對流散熱系統(tǒng),尤其是在高倍率充放電循環(huán)過程中更為明顯,另外適當(dāng)延長充放電循環(huán)步驟之間的擱置時間有利于提高PCM熱管理系統(tǒng)的散熱能力。推薦在實際電池PCM熱管理系統(tǒng)中使用相變溫度為45℃的PCM。其次,本文提出了一種用于電池系統(tǒng)散熱及防止熱失控傳播的復(fù)合板,具有"三明治"的結(jié)構(gòu),主要是由導(dǎo)熱殼、相變材料及隔熱板三部分組成的。根據(jù)電池的產(chǎn)熱理論以及相變傳熱理論等建立了復(fù)合板熱管理系統(tǒng)中鋰離子電池的三維熱模型,詳細(xì)對比分析了四種不同結(jié)構(gòu)下電池組的散熱能力以及熱失控阻隔能力。模擬結(jié)果表明,結(jié)構(gòu)1(電池之間緊密貼合)和結(jié)構(gòu)2(電池之間有空氣間隙)的散熱性能相近,說明在封閉環(huán)境中單純增加電池間的間隙并不能有效地提高電池組的散熱能力。結(jié)構(gòu)3(電池之間有散熱板)中電池組具有較好的散熱能力,但是該系統(tǒng)的熱失控阻隔能力較差。結(jié)構(gòu)4(電池之間有復(fù)合板)能夠有效提高電池組的散熱能力以及電池組溫度分布的均一性,同時能夠提高電池組的隔熱能力。增加復(fù)合板中PCM的相變潛熱能夠有效提高復(fù)合板的性能,推薦在復(fù)合板熱管理系統(tǒng)中使用相變潛熱為1125kJ/kg以及相變溫度在303.15K到323.15K 之間的 PCM。最后,基于前面的設(shè)計思路搭建了基于復(fù)合板的電池?zé)峁芾硐到y(tǒng),通過實驗和模擬初步驗證了設(shè)計的可靠性。通過實驗對比分析了在正常工作條件和熱濫用條件下不同熱管理系統(tǒng)的性能。同時建立了電池的電化學(xué)-熱耦合模型,通過該模型研究了電池的產(chǎn)熱特性以及復(fù)合板的性能。研究結(jié)果表明,電池間有復(fù)合板和石墨膜的熱管理系統(tǒng)的散熱性能最好,放電倍率較高時更為明顯;電池表面貼有石墨膜的熱管理系統(tǒng)次之,無任何熱管理系統(tǒng)的散熱性能最差。電化學(xué)-熱耦合模型能夠準(zhǔn)確預(yù)測電池在放電過程中的電壓變化,最大偏差不超過3%,同時能夠較好地預(yù)測放電末期電池的最高溫度。復(fù)合板能夠有效提高電池組的散熱能力以及隔熱能力,20A放電條件下復(fù)合板結(jié)構(gòu)中電池的最大溫升下降了 2℃,熱濫用條件下復(fù)合板系統(tǒng)中電池的溫度穩(wěn)定在36℃左右,對應(yīng)的模擬結(jié)果與實驗結(jié)果吻合較好。綜上,本文通過實驗與模擬相結(jié)合的方法,對電池動態(tài)循環(huán)中的產(chǎn)熱規(guī)律、PCM熱管理系統(tǒng)中電池的傳熱過程和關(guān)鍵因素的影響規(guī)律以及復(fù)合板的性能等方面進(jìn)行了研究,研究方法和結(jié)果可以為實際動力電池?zé)峁芾硐到y(tǒng)的設(shè)計提供理論指導(dǎo)和參考。
[Abstract]:In recent years, under the double pressure of environmental pollution and energy crisis, all countries in the world are vigorously developing new energy vehicles to replace traditional fuel vehicles, and the key to the development of new energy vehicles lies in the power battery technology. At present, lithium ion batteries have become the mainstream choice of power pools because of their excellent performance. However, lithium ion batteries still exist. A certain risk of safety, fire and explosion occurred, seriously restricting the promotion and application of new energy vehicles. Therefore, the thermal safety of lithium ion batteries has become a hot research focus. It is urgent to study the thermal management system of the power battery in the optimum temperature range. In this paper, the heat management system of the power battery based on the phase change heat dissipation is studied by the combination of experiments and simulation, and the optimization design method is put forward. First, the Phase Change Mater based on the composite phase change material (PCM) is used. The battery thermal management system of ial, PCM was studied. The composite phase change materials were prepared by paraffin and expanded graphite. The performance and influence factors of the PCM heat management system during the dynamic cycle of the battery pack were further studied. The experimental results showed that the single cell and the natural convection heat dissipation system in the process of charging and discharging cycle were used. There are two temperature peaks in the temperature change curve of the group, but only one temperature peak is found in the PCM heat management system. With the increase of charge discharge cycle ratio, the maximum temperature rise and maximum temperature difference of the PCM heat management system and the natural convection heat dissipation system are also obviously increased. In addition, the heat dissipation capacity of the PCM heat management system is also increased. It is better to be superior to the natural convection heat dissipation system, especially in the process of high rate charging and discharging cycle, and the proper extension of the shelving time between the charging and discharging cycle steps is beneficial to improve the heat dissipation capacity of the PCM heat management system. It is recommended to use the PCM. of the phase transition temperature of 45 C in the actual battery PCM heat management system. A composite plate used for the heat dissipation of the battery system and preventing the transmission of heat out of control. It has a sandwich structure, mainly composed of three parts: heat conduction shell, phase change material and heat insulation board. Based on the theory of heat production and the theory of phase change heat transfer, the three-dimensional thermal model of lithium ion battery in the composite plate heat management system is established in detail. The heat dissipation capacity and thermal control capacity of the four different structures are analyzed. The simulation results show that the heat dissipation performance of structure 1 (close bonding between batteries) and structure 2 (the air gap between batteries) is similar, indicating that only increasing the gap between batteries in a closed environment can not effectively improve the heat dissipation capacity of the battery pack. The battery pack has good heat dissipation capacity, but the heat loss barrier ability of the system is poor. The structure 4 (the composite plate between the batteries) can effectively improve the heat dissipation capacity of the battery and the homogenization of the temperature distribution of the battery group, and can improve the insulation ability of the battery group. The PCM in the composite panel can be increased. The latent heat of phase change can effectively improve the performance of the composite plate. It is recommended to use the 1125kJ/kg in the heat management system of the composite plate and the PCM. of the phase transition temperature between 303.15K and 323.15K. Based on the previous design idea, a battery thermal management system based on the composite plate is built. The design is preliminarily verified through experiments and simulation. The performance of different heat management systems under normal working conditions and heat abuse conditions was compared and analyzed. The electrochemical thermal coupling model of the battery was established. The heat production characteristics of the battery and the performance of the composite plate were studied by this model. The results showed that the heat management system of the composite plate and graphite membrane was found in the electric pool. The heat dissipation performance is the best, the discharge ratio is higher, the heat management system with graphite membrane on the surface of the battery is the second, and the heat dissipation performance of the system is the worst. The electrochemical thermal coupling model can predict the voltage change of the battery in the discharge process accurately, the maximum deviation is not more than 3%. At the same time, it can predict the end of the discharge better. At the highest temperature of the battery, the composite plate can effectively improve the heat dissipation and heat insulation ability of the battery. The maximum temperature rise of the battery in the composite plate structure under 20A discharge is 2 degrees C. The temperature of the battery in the composite plate system is stable at about 36 C under the condition of heat abuse. The corresponding simulation results are in good agreement with the experimental results. Through the combination of experiments and simulation, the heat production law in the dynamic cycle of the battery, the heat transfer process and the key factors in the PCM heat management system and the performance of the composite board are studied. The research methods and results can provide theoretical guidance for the design of the actual power pool heat management system. Reference resources.
【學(xué)位授予單位】:中國科學(xué)技術(shù)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TM912

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 李軍求;吳樸恩;張承寧;;電動汽車動力電池?zé)峁芾砑夹g(shù)的研究與實現(xiàn)[J];汽車工程;2016年01期

2 洪思慧;張新強(qiáng);汪雙鳳;張正國;;基于熱管技術(shù)的鋰離子動力電池?zé)峁芾硐到y(tǒng)研究進(jìn)展[J];化工進(jìn)展;2014年11期

3 王剛;孫文鴿;吳志根;;石蠟基/碳素復(fù)合相變材料的強(qiáng)化傳熱研究現(xiàn)狀與應(yīng)用[J];化工新型材料;2014年09期

4 劉臣臻;張國慶;王子緣;吳偉雄;蘇攀;;膨脹石墨/石蠟復(fù)合材料的制備及其在動力電池?zé)峁芾硐到y(tǒng)中的散熱特性[J];新能源進(jìn)展;2014年03期

5 肖鑫;張鵬;;泡沫石墨/石蠟復(fù)合相變材料熱物性研究[J];工程熱物理學(xué)報;2013年03期

6 唐志軍;朱群志;;熱管理技術(shù)應(yīng)用于動力電池的研究[J];電源技術(shù);2013年01期

7 雷治國;張承寧;;電動汽車電池組熱管理系統(tǒng)的研究進(jìn)展[J];電源技術(shù);2011年12期

8 ;Thermal Modeling and Cooling Analysis of High-power Lithium Ion Cells[J];Journal of Thermal Science;2011年06期

9 張國慶;張海燕;;相變儲能材料在電池?zé)峁芾硐到y(tǒng)中的應(yīng)用研究進(jìn)展[J];材料導(dǎo)報;2006年08期

10 孫金華,陸守香,孫占輝;自反應(yīng)性化學(xué)物質(zhì)的熱危險性評價方法[J];中國安全科學(xué)學(xué)報;2003年04期

相關(guān)博士學(xué)位論文 前1條

1 饒中浩;基于固液相變傳熱介質(zhì)的動力電池?zé)峁芾硌芯縖D];華南理工大學(xué);2013年

相關(guān)碩士學(xué)位論文 前7條

1 南爵;相變散熱在鋰離子電池?zé)峁芾碇械膽?yīng)用[D];電子科技大學(xué);2016年

2 馮麗華;鋰離子電池復(fù)合型安全電解液研究[D];中國科學(xué)技術(shù)大學(xué);2016年

3 王子緣;基于高導(dǎo)熱殼體的動力電池?zé)峁芾硐到y(tǒng)設(shè)計與研究[D];廣東工業(yè)大學(xué);2015年

4 孫秋娟;鎳鈷錳酸鋰/鈦酸鋰電池?zé)嵝?yīng)的實驗與模擬研究[D];中國科學(xué)技術(shù)大學(xué);2015年

5 盧俊威;動力電池相變冷卻技術(shù)與熱管耦合傳熱研究[D];吉林大學(xué);2014年

6 胡銳鴻;電動汽車用鋰離子電池?zé)崽匦约吧嵫b置的數(shù)值模擬[D];華南理工大學(xué);2014年

7 馮竟陽;磷酸鐵鋰電池包溫度分布特性仿真方法研究及熱管理系統(tǒng)設(shè)計[D];青島大學(xué);2013年

,

本文編號:1992290

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/1992290.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶23e44***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com
国产成人精品国产成人亚洲| 欧美丝袜诱惑一区二区| 老司机精品视频在线免费看| 亚洲天堂精品1024| 国产伦精品一一区二区三区高清版 | 欧美人妻盗摄日韩偷拍| 熟妇久久人妻中文字幕| 国产中文字幕一区二区| 日本少妇中文字幕不卡视频| 日韩人妻免费视频一专区| 欧洲精品一区二区三区四区| 91插插插外国一区二区| 国产精品一区二区日韩新区| 日韩av欧美中文字幕| 日木乱偷人妻中文字幕在线| 午夜精品一区免费视频| 国产午夜精品美女露脸视频| 国产女性精品一区二区三区 | 亚洲一区二区三区国产| 一区二区日韩欧美精品| 日本精品最新字幕视频播放 | 视频一区二区黄色线观看| 国产精品熟女乱色一区二区| 日韩精品在线观看一区| 色婷婷国产精品视频一区二区保健| 91亚洲精品亚洲国产| 日本丁香婷婷欧美激情| 丰满人妻少妇精品一区二区三区| 午夜福利视频偷拍91| 亚洲中文字幕人妻av| 欧美日韩乱码一区二区三区| 丰满的人妻一区二区三区| 日韩蜜桃一区二区三区| 麻豆印象传媒在线观看| 99精品国产一区二区青青 | 少妇人妻中出中文字幕| 在线观看免费视频你懂的| 激情图日韩精品中文字幕| 91精品国自产拍老熟女露脸| 日韩成人动画在线观看| 国产精品欧美激情在线|