表面功能化碳納米管促進(jìn)微生物燃料電池界面電子傳遞機(jī)理研究
本文選題:微生物燃料電池 + 腐敗希瓦氏菌。 參考:《西南大學(xué)》2017年碩士論文
【摘要】:微生物燃料電池(Microbial fuel cell,MFC)是一種利用微生物的新陳代謝作用將有機(jī)燃料或廢棄物中的化學(xué)能轉(zhuǎn)化為可輸出電能的裝置,它是微生物技術(shù)和電化學(xué)技術(shù)相結(jié)合的一種新興能源系統(tǒng)。除了提供可直接利用的電能外,MFC在污水處理、頑固有機(jī)污染物降解、有害金屬離子回收與利用等環(huán)境工程領(lǐng)域也具有廣泛的應(yīng)用前景。目前,由于MFC功率密度低、啟動速度慢和生產(chǎn)成本較高等限制因素,這項(xiàng)技術(shù)尚處于實(shí)驗(yàn)室研究階段,離規(guī);瘧(yīng)用還有一定的距離。在MFC中,陽極生物電催化性能是主要的限制因素之一,然而它又在很大程度上受限于陽極產(chǎn)電微生物與電極間的界面電子傳遞效率。因此,對陽極材料結(jié)構(gòu)和化學(xué)性質(zhì)的優(yōu)化,促進(jìn)細(xì)菌與電極的快速電子傳遞,是提升MFC性能的關(guān)鍵手段。碳納米管(Carbon nanotubes,CNTs)作為一種性能優(yōu)異的一維納米材料,被廣泛應(yīng)用于電化學(xué)等領(lǐng),尤其作為MFC陽極材料,更是發(fā)揮了其自身特有的性能。在MFC陽極室中,產(chǎn)電微生物通過厭氧氧化有機(jī)底物將電子輸出到胞外并交付給陽極,因此,陽極接受電子的能力直接影響MFC的產(chǎn)電性能。而CNTs由于其高導(dǎo)電性和良好的生物兼容性,能夠加強(qiáng)產(chǎn)電微生物和電活性分子與電極間的接觸,并快速的將接收的電子進(jìn)行轉(zhuǎn)移,作為陽極材料能夠提高電池性能;诖,本文從設(shè)計(jì)不同表面性質(zhì)的陽極材料出發(fā),以腐敗希瓦氏菌(Shewanella putrefaciens CN32)為產(chǎn)電菌株,研究它們對S.putrefaciens CN32陽極產(chǎn)電能力和胞外電子傳遞效率的增強(qiáng)作用,并從胞外電子傳遞所涉及的產(chǎn)電菌株和電極材料兩方面系統(tǒng)地研究MFC陽極胞外電子傳遞機(jī)制。主要研究內(nèi)容和結(jié)果如下:(1)首先采用濃酸酸化法處理CNTs,成功制備了羧基化的碳納米管。實(shí)驗(yàn)結(jié)果顯示,酸化后的CNT_b/CC陽極能夠獲得最大平臺電流密度為1.41±0.06 A m~(-2),相比于原始的CNTa/CC(1.09±0.02 A m~(-2))增加了29%,表明酸化之后的CNTb/CC陽極具有更高的MFC電流輸出能力。并且改善CNTs的表面性質(zhì)之后,最大功率密度達(dá)到472 mW m~(-2),高于原始的CNTa/CC陽極(272 mW m~(-2))的1.7倍。從二者水溶液分別靜置3h之后的照片可以看出,CNTs經(jīng)酸化處理后親水性得到了提高,并且SEM實(shí)驗(yàn)結(jié)果證實(shí)細(xì)菌在酸化后的CNTs上生長量高于未經(jīng)任何處理的CNTs表面。初步斷定,MFC陽極材料表面親水性的改變能夠促進(jìn)細(xì)菌生物膜在電極表面的生長和附著,從而提高M(jìn)FC的界面電子傳遞速率。(2)其次,采用物理吸附法制備了碳納米管-磷鉬酸/碳?xì)?CNT-PMo/CF)復(fù)合材料,并將其用作S.putrefaciens CN32 MFC的陽極材料,利用MFC全池測試陽極的產(chǎn)電性能,分析其對陽極生物膜生長和生物電催化性能的影響。接觸角實(shí)驗(yàn)數(shù)據(jù)表明,CNTs經(jīng)PMo修飾之后,親水性得到明顯提高。比較不同CNT/PMo比例的復(fù)合材料發(fā)現(xiàn),當(dāng)CNTs與PMo的質(zhì)量比為1:2時(shí),所制備的CNT-PMo/CF復(fù)合材料具有最小的界面電荷傳遞阻抗,從而具有最好的生物電催化性能,當(dāng)其作為MFC陽極時(shí)的最大功率密度為1235 mW m~(-2),相比CNT/CF陽極(190 mW m~(-2))MFC提高了6.5倍,比單獨(dú)的CF陽極(99 mW m~(-2))MFC提高12倍,證明了由陽極材料的獨(dú)特表面性質(zhì)及較快的界面電子傳遞傳遞速率對增強(qiáng)MFC陽極生物電流產(chǎn)生的重要作用。(3)最后,采用化學(xué)反應(yīng)法合成了碳納米管-離子液體(CNT-IL)納米復(fù)合材料,將該納米復(fù)合材料應(yīng)用于接種S.putrefaciens CN32的MFC陽極并系統(tǒng)分析了其增強(qiáng)MFC陽極生物電催化的機(jī)制。帶正電的IL與酸化后帶負(fù)電的CNTs結(jié)合,所形成的CNT-IL納米復(fù)合材料也是帶正電的,而我們所用的S.putrefaciens CN32表面是顯負(fù)電性的。同時(shí),研究發(fā)現(xiàn),當(dāng)CNT和IL的比例達(dá)到1:90的時(shí)候,該復(fù)合材料中N的含量最高,這就使得S.putrefaciens CN32所分泌的黃素類電子介體FMN能夠更多的聚集在CNT-IL b納米復(fù)合材料陽極表面,而這些電子介體可以在生物膜內(nèi)介導(dǎo)短距離、快速的間接電子傳遞過程。另外,由于IL和CNT同時(shí)都具有的高導(dǎo)電性,可以確保黃素類電子介體在該復(fù)合陽極材料界面上實(shí)現(xiàn)快速的電化學(xué)氧化反應(yīng),從而協(xié)同地增強(qiáng)生物膜內(nèi)內(nèi)源性電子介體介導(dǎo)的直接電化學(xué)過程。CNT-IL b復(fù)合陽極的MFC獲得了1076±85 mW m~(-2)的最大功率輸出密度,是單獨(dú)CNT陽極的3倍。在所制備的CNT-IL納米復(fù)合材料中,IL的修飾使得該納米復(fù)合材料相比于單獨(dú)的CNT具有更大的比表面積、更好的親水性、導(dǎo)電性和生物相容性,使得二者在增強(qiáng)陽極生物膜直接電化學(xué)過程中展現(xiàn)出獨(dú)特的協(xié)同作用,首次提出了一種基于IL功能化CNTs的策略能夠增強(qiáng)MFC陽極生物電催化的協(xié)同作用,為MFC的實(shí)際應(yīng)用打開新思路。
[Abstract]:Microbial fuel cell (MFC) is a device that uses the metabolism of microbes to convert chemical energy in organic fuel or waste into output power. It is a new energy system combined with microbiological technology and electrochemical technology. In addition to providing direct use of electricity, MFC is at the sewage site. In the field of environmental engineering, such as the degradation of refractory organic pollutants, the recovery and utilization of harmful metal ions and other environmental engineering fields, the technology is still in the stage of laboratory research because of the low power density of MFC, slow start speed and high production cost. This technology is still in a certain distance from the large-scale application. In the MFC, it is positive. The electrocatalytic performance of polar organisms is one of the main limiting factors. However, it is largely limited to the electron transfer efficiency at the interface between the anode producing microorganism and the electrode. Therefore, the optimization of the structure and chemical properties of the anode materials and the rapid electronic transmission of the bacteria and electrodes are the key means to improve the performance of MFC. Carbon nanotubes (C Arbon nanotubes, CNTs, as a one dimensional nanomaterial with excellent performance, is widely used in electrochemistry collar, especially as a MFC anode material, it has its own unique performance. In the MFC anode chamber, the electric microorganism output the electron to the anode through the anaerobic oxidizing organic substrate, so the anode accepts electricity. The ability of the MFC is directly affected by the ability of the subunit. And because of its high conductivity and good biocompatibility, CNTs can strengthen the contact between the electric microorganism and the electroactive molecules and the electrode, and quickly transfer the received electrons to the anode material to improve the battery energy. Based on this, this paper designs the different surface properties. The anode material, taking the Shewanella putrefaciens CN32 as the producing strain, studies the enhancement of the S.putrefaciens CN32 anode production capacity and the exo electron transfer efficiency, and systematically studies the MFC anode extracellular electron transfer machine from two aspects of the electric producing strain and electrode material involved in the extracellular electron transfer. The main research contents and results are as follows: (1) the carboxylation of carbon nanotubes was successfully prepared by the treatment of CNTs with concentrated acid acidification. The experimental results showed that the maximum platform current density after acidified CNT_b/CC anode was 1.41 + 0.06 A m~ (-2), and increased by 29% compared to the original CNTa/CC (1.09 + 0.02 A m~ (-2)), indicating acidification The post CNTb/CC anode has a higher MFC current output capacity. And after improving the surface properties of CNTs, the maximum power density is 472 mW m~ (-2), higher than the original CNTa/CC anode (272 mW m~ (-2)). The photo of the CNTs after the acidification of the two water solution shows that the hydrophilicity of the CNTs is improved after acidification. The results of EM experiment confirmed that the growth of the bacteria on the acidified CNTs was higher than that of the CNTs surface without any treatment. It was preliminarily concluded that the change of the hydrophilicity of the surface of the MFC anode material could promote the growth and attachment of the bacterial biofilm on the surface of the electrode and thus improve the electron transfer rate of the interface of MFC. (2) Secondly, the physical adsorption method was used to prepare the carbon nanofiltration. The rice tube phospho Molybdate / carbon felt (CNT-PMo/CF) composite was used as the anode material of S.putrefaciens CN32 MFC. The effect of the anode on the growth of anode biofilm and the bioelectrocatalytic properties of the anode was analyzed by the full pool of MFC. The contact angle experimental data showed that the hydrophilicity of CNTs was greatly improved after the CNTs was modified by PMo. The composite materials with different CNT/PMo ratios have found that when the mass ratio of CNTs to PMo is 1:2, the prepared CNT-PMo/CF composites have the smallest interface charge transfer impedance, and thus have the best bioelectrocatalytic performance. The maximum power density of the composite is 1235 mW m~ (-2) when the MFC anode is used as the anode, and is higher than the CNT/CF anode (190 mW m~). It is 6.5 times higher than that of the single CF anode (99 mW m~ (-2)) MFC. It is proved that the unique surface properties of the anode material and the rapid electron transfer rate of the interface have important effect on the enhancement of the biocurrent of the MFC anode. (3) finally, the carbon nanotube ionic liquid (CNT-IL) nanocomposite was synthesized by chemical reaction. The rice composite material was applied to the MFC anode inoculated with S.putrefaciens CN32 and the mechanism of its enhanced MFC anode bioelectrocatalysis was systematically analyzed. The positive IL was combined with the negative CNTs after acidification. The formed CNT-IL nanocomposite was also positive, while the S.putrefaciens CN32 surface we used was negative. Meanwhile, the research of the S.putrefaciens CN32 surface was negative. It is found that when the proportion of CNT and IL reaches 1:90, the content of N is the highest in the composite, which makes the flavin electron medium FMN secreted by S.putrefaciens CN32 can accumulate more on the surface of the CNT-IL B nanocomposite anode, and these electronic mediators can mediate short distance in the biofilm and fast indirect electron transfer. In addition, due to the high conductivity of both IL and CNT at the same time, it can ensure the rapid electrochemical oxidation reaction on the interface of the composite anode material, and thus synergically enhance the MFC of the.CNT-IL B composite anode mediated by the endogenous electronic mediator in the biofilm and obtain 1076 + 85 mW m~ The maximum power output density of (-2) is 3 times that of a single CNT anode. In the prepared CNT-IL nanocomposites, the modification of IL makes the nanocomposites have a greater specific surface area, better hydrophilicity, conductivity and biocompatibility than the separate CNT, which makes the two in the direct electrochemical process of the enhanced anode biofilm. For the first time, a new strategy based on IL functionalized CNTs can enhance the synergism of MFC anode bioelectrocatalysis and open a new idea for the practical application of MFC.
【學(xué)位授予單位】:西南大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TM911.45
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李海杰;;復(fù)合碳納米陽極強(qiáng)化微生物燃料電池產(chǎn)電研究[J];華南師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2016年04期
2 段志偉;揭曉華;張艷梅;;多壁碳納米管的酸處理工藝研究[J];材料導(dǎo)報(bào);2012年16期
3 王慧勇;梁鵬;黃霞;;表面改性碳納米管粉體在微生物燃料電池中的應(yīng)用[J];中國給水排水;2011年11期
4 劉琦;;中國新能源發(fā)展研究[J];電網(wǎng)與清潔能源;2010年01期
5 梁鵬;范明志;曹效鑫;黃霞;彭尹明;王碩;鞏前明;梁吉;;碳納米管陽極微生物燃料電池產(chǎn)電特性的研究[J];環(huán)境科學(xué);2008年08期
6 吳小利,岳濤,陸榮榮,朱德彰,朱志遠(yuǎn);碳納米管的表面修飾及FTIR,Raman和XPS光譜表征[J];光譜學(xué)與光譜分析;2005年10期
7 晉衛(wèi)軍,孫旭峰,王煜;碳納米管溶解性及其化學(xué)修飾[J];新型炭材料;2004年04期
8 黎沙泥,許向彬,李忠明,楊鳴波;碳納米管的表面修飾及其在聚合物中的應(yīng)用[J];工程塑料應(yīng)用;2004年10期
9 單永奎,戴立益,余淑媛,葉生榮,何鳴元;多元多金屬含氧簇合物在催化化學(xué)中的應(yīng)用[J];化學(xué)進(jìn)展;2003年02期
10 鄭純智,張國華,王普力;磷鉬酸催化合成氯乙酸乙酯[J];應(yīng)用化工;2001年01期
相關(guān)博士學(xué)位論文 前1條
1 張葉臻;新型石墨紙和石墨烯在微生物燃料電池中的應(yīng)用研究[D];華南理工大學(xué);2013年
,本文編號:1978420
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/1978420.html