基于磁耦合諧振的無線傳能系統(tǒng)設(shè)計(jì)與實(shí)現(xiàn)
本文選題:磁耦合諧振式 + 頻率跟蹤 ; 參考:《重慶大學(xué)》2016年碩士論文
【摘要】:磁耦合諧振式無線能量傳輸是近十年新興的中等距離電能傳輸技術(shù),利用磁場(chǎng)在電感線圈中的共振耦合,實(shí)現(xiàn)傳輸功率和距離的提高。由于傳輸距離、功率、成本和靈活性的優(yōu)勢(shì),磁耦合諧振技術(shù)已成為無線能量傳輸領(lǐng)域的研究熱點(diǎn),F(xiàn)有研究表明,磁耦合諧振系統(tǒng)在耦合系數(shù)較高時(shí)存在嚴(yán)重的頻率分裂現(xiàn)象,激勵(lì)源頻率成為制約功率提高的重要因素。收發(fā)線圈之間的距離具有隨機(jī)性的特點(diǎn),難以保證負(fù)載接收功率和額定功率的吻合。本文將從理論上分析最佳頻率的偏移規(guī)律和功率的衰減特性,提出相應(yīng)的頻率跟蹤和功率控制策略。頻率跟蹤方面,本文利用互感理論對(duì)串聯(lián)型諧振回路進(jìn)行建模,分析最佳頻率點(diǎn)隨耦合系數(shù)的變化規(guī)律。當(dāng)系統(tǒng)處于過耦合狀態(tài)時(shí),由于收發(fā)回路的阻抗特性發(fā)生變化,系統(tǒng)的最大功率傳輸頻率點(diǎn)向固有頻率兩側(cè)偏移,且發(fā)送回路在該頻率點(diǎn)仍將保持諧振狀態(tài)。因此,跟蹤發(fā)送回路諧振頻率的偏移,可以實(shí)現(xiàn)過耦合狀態(tài)下的功率提高。結(jié)合羅耶振蕩器的工作原理,系統(tǒng)采用改進(jìn)的羅耶電路實(shí)現(xiàn)頻率跟蹤、電壓逆變和共振耦合功能。功率控制方面,在線圈的感應(yīng)范圍內(nèi),系統(tǒng)傳輸功率總是隨距離的增加而迅速衰減。為保證負(fù)載接收功率和額定功率的一致性,本文在收發(fā)兩端建立通信鏈路,通過接收狀態(tài)的實(shí)時(shí)監(jiān)控和反饋調(diào)節(jié),保證接收功率的穩(wěn)定和準(zhǔn)確。由于電感線圈的諧振電壓、磁通量的變化率和感應(yīng)電壓存在正比關(guān)系,本文提出利用升壓電路進(jìn)行功率控制的策略。為了適應(yīng)升壓電路的要求,系統(tǒng)采用比例-積分-微分調(diào)節(jié)器來控制羅耶振蕩電路的輸入電壓,從而達(dá)到調(diào)節(jié)傳輸功率的目的。基于電路理論的分析和仿真結(jié)果,本文搭建一套完整的磁耦合諧振式無線能量傳輸裝置并進(jìn)行測(cè)試。結(jié)果表明,該裝置可以在12cm距離內(nèi)實(shí)現(xiàn)5W穩(wěn)定功率的傳輸。
[Abstract]:Magnetic coupling resonant wireless energy transmission is a new medium distance power transmission technology in recent ten years. By using the resonance coupling of magnetic field in inductance coil, the transmission power and distance can be improved. Due to the advantages of transmission distance, power, cost and flexibility, magnetically coupled resonance technology has become a hot topic in the field of wireless energy transmission. The current studies show that the frequency splitting phenomenon of the magnetically coupled resonance system is serious when the coupling coefficient is high and the frequency of the excitation source is an important factor restricting the power increase. The distance between the receiving and transmitting coils is random, so it is difficult to match the load receiving power with the rated power. In this paper, the migration law of optimal frequency and the attenuation characteristics of power are analyzed theoretically, and the corresponding frequency tracking and power control strategies are proposed. In the aspect of frequency tracking, the mutual inductance theory is used to model the series resonant loop, and the variation law of the optimal frequency point with the coupling coefficient is analyzed. When the system is in an over-coupled state, the maximum power transmission frequency of the system deviates to both sides of the natural frequency due to the change of the impedance characteristics of the transceiver loop, and the transmission loop will remain resonant at this frequency point. Therefore, tracking the offset of the resonant frequency of the transmission loop can improve the power in the over-coupling state. Combined with the working principle of Royer oscillator, the system adopts the improved Loyer circuit to realize frequency tracking, voltage inversion and resonance coupling. In power control, in the inductive range of the on-line loop, the transmission power of the system always decreases rapidly with the increase of the distance. In order to ensure the consistency of load receiving power and rated power, this paper establishes a communication link at both ends of the receiving and transmitting stations, and ensures the stability and accuracy of the received power by real-time monitoring and feedback adjusting of the receiving state. Because the resonant voltage of inductance coil and the rate of change of magnetic flux are proportional to the inductive voltage, a power control strategy using boost circuit is proposed in this paper. In order to meet the requirements of the boost circuit, the proportional integral differential regulator is used to control the input voltage of the Loyer oscillating circuit, so as to adjust the transmission power. Based on the analysis of circuit theory and simulation results, a complete set of magnetic coupling resonant wireless energy transmission device is built and tested. The results show that the device can transmit 5 W stable power within 12cm distance.
【學(xué)位授予單位】:重慶大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:TM724
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 劉喜聲;馬殿光;唐厚君;;磁耦合諧振式無線電能傳輸系統(tǒng)頻率特性分析[J];電力電子技術(shù);2014年11期
2 駱彥廷;楊擁民;陳仲生;;磁耦合諧振式無線電能傳輸系統(tǒng)建模與分析[J];中國(guó)集成電路;2013年08期
3 李鳳娥;牛王強(qiáng);;對(duì)稱串聯(lián)型非接觸電能傳輸系統(tǒng)頻率分裂現(xiàn)象的頻域分析[J];上海海事大學(xué)學(xué)報(bào);2013年01期
4 李陽(yáng);楊慶新;閆卓;張超;陳海燕;張獻(xiàn);;無線電能有效傳輸距離及其影響因素分析[J];電工技術(shù)學(xué)報(bào);2013年01期
5 趙爭(zhēng)鳴;張藝明;陳凱楠;;磁耦合諧振式無線電能傳輸技術(shù)新進(jìn)展[J];中國(guó)電機(jī)工程學(xué)報(bào);2013年03期
6 湯偉;楊瑞霞;郭志濤;顧軍華;;一種高Q值的諧振式無線能量傳輸技術(shù)的應(yīng)用[J];電工電能新技術(shù);2012年04期
7 黃吉金;黃珊;;微波能量傳輸技術(shù)及其應(yīng)用發(fā)展方向[J];微波學(xué)報(bào);2012年S2期
8 鄭新卿;;升壓斬波電路的微分原理及應(yīng)用分析[J];數(shù)字技術(shù)與應(yīng)用;2011年09期
9 高奇峰;楊兆建;何吉利;;分離式變壓器電磁結(jié)構(gòu)與參數(shù)分析[J];電力自動(dòng)化設(shè)備;2009年09期
10 王威;楊平;;智能PID控制方法的研究現(xiàn)狀及應(yīng)用展望[J];自動(dòng)化儀表;2008年10期
相關(guān)博士學(xué)位論文 前1條
1 李陽(yáng);大功率諧振式無線電能傳輸方法與實(shí)驗(yàn)研究[D];河北工業(yè)大學(xué);2012年
相關(guān)碩士學(xué)位論文 前5條
1 修自任;無線能量傳輸?shù)姆蔷性現(xiàn)象研究[D];電子科技大學(xué);2015年
2 董苗苗;磁耦合諧振式無線電能傳輸?shù)难芯縖D];華北電力大學(xué);2014年
3 史繼翠;磁耦合諧振式無線電能傳輸系統(tǒng)建模及優(yōu)化分析[D];湘潭大學(xué);2013年
4 任立濤;磁耦合諧振式無線能量傳輸功率特性研究[D];哈爾濱工業(yè)大學(xué);2009年
5 毛賽君;非接觸感應(yīng)電能傳輸系統(tǒng)關(guān)鍵技術(shù)研究[D];南京航空航天大學(xué);2006年
,本文編號(hào):1976803
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/1976803.html