異步電機(jī)弱磁區(qū)轉(zhuǎn)矩最大化策略
本文選題:異步電機(jī) + 弱磁區(qū) ; 參考:《吉林大學(xué)》2017年碩士論文
【摘要】:異步電機(jī)因其結(jié)構(gòu)簡(jiǎn)單、控制方便及其魯棒性,使其在電機(jī)驅(qū)動(dòng)系統(tǒng)中占據(jù)重要的地位。異步電機(jī)一個(gè)非常重要的應(yīng)用是在高速區(qū),比如機(jī)床、主軸驅(qū)動(dòng)和牽引驅(qū)動(dòng)中,這就要求異步電機(jī)在整個(gè)運(yùn)行區(qū)域內(nèi)都能獲得高轉(zhuǎn)矩,實(shí)現(xiàn)高性能控制。電動(dòng)汽車運(yùn)行過(guò)程中頻繁的啟停、加減速等各種復(fù)雜工況的相互切換對(duì)異步電機(jī)的控制提出更高的要求,既要適應(yīng)穩(wěn)態(tài)運(yùn)行,又要兼顧動(dòng)態(tài)需求。本文針對(duì)異步電機(jī)弱磁區(qū)的控制進(jìn)行了深入的分析和研究。本文首先討論了異步電機(jī)矢量控制系統(tǒng)的基本原理。將三相A-B-C坐標(biāo)系下具有非線性、多參量、強(qiáng)耦合、高階時(shí)變微分方程的電機(jī)模型轉(zhuǎn)化到兩相d-q同步旋轉(zhuǎn)坐標(biāo)系下,完成對(duì)復(fù)雜數(shù)學(xué)方程的簡(jiǎn)化,實(shí)現(xiàn)磁鏈與轉(zhuǎn)矩的解耦,方便系統(tǒng)的分析和控制。之后,本文討論了異步電機(jī)運(yùn)行過(guò)程中發(fā)生過(guò)壓、過(guò)流、過(guò)載時(shí)的電壓、電流限制方法,并根據(jù)電機(jī)運(yùn)行約束條件將電機(jī)運(yùn)行劃分為三個(gè)區(qū)域,根據(jù)三個(gè)區(qū)域的不同特點(diǎn),提出了能同時(shí)適應(yīng)弱磁區(qū)穩(wěn)態(tài)運(yùn)行和瞬態(tài)波動(dòng),實(shí)現(xiàn)轉(zhuǎn)矩最大化的控制策略。在弱磁區(qū),充分利用電機(jī)和逆變器電壓、電流容限,無(wú)需d軸電流控制器,通過(guò)控制定子電流轉(zhuǎn)矩分量,穩(wěn)定異步電機(jī)高速失步狀態(tài),實(shí)現(xiàn)穩(wěn)態(tài)工作時(shí)轉(zhuǎn)矩最大化。當(dāng)電機(jī)工作在最大電壓的動(dòng)態(tài)需求時(shí),根據(jù)速度波動(dòng)的大小輸出一個(gè)旋轉(zhuǎn)角,旋轉(zhuǎn)定子電壓矢量,產(chǎn)生瞬態(tài)電壓邊緣,確保驅(qū)動(dòng)系統(tǒng)的迅速響應(yīng)。同時(shí)分析整個(gè)驅(qū)動(dòng)系統(tǒng)的能量流動(dòng)和損耗發(fā)生,考慮鐵損對(duì)電機(jī)運(yùn)行全區(qū)域的影響,尤其是在弱磁區(qū),引入鐵損補(bǔ)償機(jī)制,提高系統(tǒng)的響應(yīng)和轉(zhuǎn)矩輸出能力,從而提高電機(jī)的工作效率。最后,在MATLAB/Simulink環(huán)境下搭建仿真模型,并在LEVDEO電動(dòng)汽車專用72V/5KW交流異步電機(jī)上測(cè)試。仿真和實(shí)驗(yàn)證明,該控制系統(tǒng)能實(shí)現(xiàn)異步電機(jī)弱磁區(qū)轉(zhuǎn)矩最大化,能同時(shí)適應(yīng)穩(wěn)態(tài)運(yùn)行和瞬態(tài)波動(dòng),具有很強(qiáng)的魯棒性。
[Abstract]:Because of its simple structure, convenient control and robustness, asynchronous motor plays an important role in motor drive system. One of the most important applications of asynchronous motor is in the high speed area, such as machine tool, spindle drive and traction drive, which requires the induction motor to obtain high torque and achieve high performance control in the whole running area. The switching of complex working conditions such as frequent starting and stopping, acceleration and deceleration of electric vehicles puts forward higher requirements for the control of asynchronous motors, which should not only adapt to the steady operation, but also give consideration to the dynamic requirements. In this paper, the control of weak magnetic field of asynchronous motor is analyzed and studied. In this paper, the basic principle of vector control system for asynchronous motor is discussed. The motor model with nonlinear, multi-parameter, strong coupling and high-order time-varying differential equations in three-phase A-B-C coordinate system is transformed into a two-phase d-q synchronous rotating coordinate system to simplify the complex mathematical equations and decouple the flux and torque. Facilitate system analysis and control. After that, this paper discusses the methods of voltage and current limitation in the operation of asynchronous motor, and divides the motor operation into three regions according to the operating constraints, according to the different characteristics of the three regions. A control strategy for torque maximization is proposed, which can simultaneously adapt to steady state operation and transient ripple in weak magnetic field. In the weak magnetic field, the voltage and current tolerance of the motor and inverter are fully utilized, and the d axis current controller is not needed. By controlling the stator current torque component, the high speed out-of-step state of the asynchronous motor can be stabilized, and the torque maximization in steady operation can be realized. When the motor works in the dynamic demand of the maximum voltage, it outputs a rotation angle according to the magnitude of the velocity fluctuation, rotates the stator voltage vector, produces the transient voltage edge, and ensures the rapid response of the drive system. At the same time, the energy flow and loss of the whole drive system are analyzed, and the influence of iron loss on the whole running area of the motor is considered, especially in the weak magnetic field, the compensation mechanism of iron loss is introduced to improve the response and torque output ability of the system. So as to improve the working efficiency of the motor. Finally, the simulation model is built in MATLAB/Simulink environment, and tested on the special 72V/5KW AC asynchronous motor of LEVDEO electric vehicle. Simulation and experiments show that the control system can maximize the torque in the weak magnetic field of asynchronous motor and can adapt to steady state operation and transient fluctuation simultaneously, and has strong robustness.
【學(xué)位授予單位】:吉林大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TM343
【參考文獻(xiàn)】
相關(guān)期刊論文 前7條
1 李政學(xué);張永昌;李正熙;班曉娟;楊海濤;;異步電機(jī)新型占空比直接轉(zhuǎn)矩控制方案[J];電工技術(shù)學(xué)報(bào);2015年24期
2 吳曉新;柳巍;阮毅;張?bào)揖?;一種SVPWM過(guò)調(diào)制算法及其在兩電平逆變器中的應(yīng)用[J];電機(jī)與控制學(xué)報(bào);2015年01期
3 常乾坤;葛瓊璇;雷鳴;張波;;一種高性能感應(yīng)電機(jī)無(wú)速度傳感器矢量控制策略[J];電機(jī)與控制學(xué)報(bào);2014年12期
4 趙云;劉洋;李葉松;;實(shí)現(xiàn)感應(yīng)電機(jī)寬范圍最大轉(zhuǎn)矩控制的電流優(yōu)化策略[J];中國(guó)電機(jī)工程學(xué)報(bào);2012年03期
5 李延峰;于海斌;;一種用于異步電機(jī)效率優(yōu)化的混合搜索方法[J];電機(jī)與控制學(xué)報(bào);2009年03期
6 龍波;曹秉剛;胡慶華;李飛;;電動(dòng)汽車用感應(yīng)電機(jī)弱磁區(qū)電磁轉(zhuǎn)矩最大化控制[J];西安交通大學(xué)學(xué)報(bào);2009年04期
7 竇汝振;吳志新;趙春明;;電動(dòng)汽車用異步電機(jī)弱磁運(yùn)行的最大轉(zhuǎn)矩控制[J];電機(jī)與控制應(yīng)用;2006年12期
相關(guān)碩士學(xué)位論文 前1條
1 徐維克;SPWM變頻調(diào)速矢量控制系統(tǒng)的建模與仿真[D];大連海事大學(xué);2005年
,本文編號(hào):1970844
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/1970844.html