集成電動(dòng)汽車充電及牽引供電系統(tǒng)的直流微電網(wǎng)研究
本文選題:直流微電網(wǎng) + 直流牽引供電系統(tǒng); 參考:《華北電力大學(xué)》2017年碩士論文
【摘要】:微電網(wǎng)是集發(fā)、配、用電為一體的自治系統(tǒng),構(gòu)建了全新的能源技術(shù)公平競(jìng)爭(zhēng)體系,具有長(zhǎng)久的技術(shù)、經(jīng)濟(jì)、環(huán)境和社會(huì)效益,而直流微電網(wǎng)作為一種新型的電網(wǎng)形式,符合當(dāng)前清潔能源和能源互聯(lián)網(wǎng)的發(fā)展需求。另一方面,隨著能源危機(jī)和環(huán)境問(wèn)題的加重,電氣化軌道交通車輛和電動(dòng)汽車將是未來(lái)城市電網(wǎng)負(fù)荷的重要組成部分,其供電系統(tǒng)安全運(yùn)行的意義重大。在此背景下,根據(jù)牽引供電系統(tǒng)和電動(dòng)汽車充電的特點(diǎn),同時(shí)考慮可再生能源的有效利用,提出了集成電動(dòng)汽車充電及牽引供電系統(tǒng)的直流微電網(wǎng)架構(gòu),描述了系統(tǒng)的基本組成和拓?fù)浣Y(jié)構(gòu),為了保證此系統(tǒng)安全穩(wěn)定地運(yùn)行,重點(diǎn)研究了系統(tǒng)的控制策略。首先,介紹了傳統(tǒng)下垂控制,并從環(huán)流大小、輸出電壓和輸出電流三方面對(duì)下垂控制下并聯(lián)分布式電源系統(tǒng)進(jìn)行了穩(wěn)態(tài)分析,得到了影響傳統(tǒng)下垂控制性能的因素。進(jìn)一步提出了一種基于自適應(yīng)虛擬阻抗的改進(jìn)下垂控制策略,可以根據(jù)分布式電源間功率分配的差額,自動(dòng)調(diào)節(jié)下垂虛擬阻抗,從而實(shí)現(xiàn)功率均分。仿真結(jié)果驗(yàn)證了所提改進(jìn)下垂控制策略的有效性。其次,針對(duì)單邊供電的情況,提出了基于功率分層的協(xié)調(diào)控制策略。對(duì)系統(tǒng)各單元進(jìn)行了劃分和簡(jiǎn)介,確定了系統(tǒng)運(yùn)行所需的約束條件,分別介紹了該協(xié)調(diào)控制策略的能量管理和功率分配方案,闡述了并網(wǎng)運(yùn)行、孤島運(yùn)行及過(guò)渡運(yùn)行狀態(tài)下的協(xié)調(diào)控制流程,分析了系統(tǒng)各單元變換器的控制方法,并搭建了仿真模型對(duì)所提控制策略進(jìn)行了驗(yàn)證。最后,針對(duì)雙邊供電的情況,提出了一種基于DBS的直流微電網(wǎng)改進(jìn)協(xié)調(diào)控制策略,將系統(tǒng)運(yùn)行劃分為四種工作模式,并通過(guò)電壓信號(hào)同步預(yù)處理環(huán)節(jié)對(duì)各模式間的切換信號(hào)進(jìn)行了優(yōu)化。該控制策略省去了中央控制器,同時(shí)結(jié)合了基于自適應(yīng)虛擬阻抗的改進(jìn)下垂控制策略,提高了系統(tǒng)整體的可靠性和精確性。仿真結(jié)果表明,該控制策略可以維持直流母線電壓的穩(wěn)定,實(shí)現(xiàn)系統(tǒng)的功率平衡。
[Abstract]:Microgrid is an autonomous system that integrates distribution, distribution and power consumption. A new fair competition system of energy technology is constructed. It has long-term technical, economic, environmental and social benefits, while DC microgrid is a new type of power grid. In line with the current clean energy and energy Internet development needs. On the other hand, with the aggravation of energy crisis and environmental problems, electrified rail transit vehicles and electric vehicles will be an important part of the future urban power grid load, and the safe operation of its power supply system is of great significance. Under this background, according to the characteristics of traction power supply system and electric vehicle charging, and considering the effective utilization of renewable energy, a DC microgrid architecture integrating electric vehicle charging and traction power supply system is proposed. The basic composition and topological structure of the system are described. In order to ensure the safe and stable operation of the system, the control strategy of the system is studied emphatically. Firstly, the traditional droop control is introduced, and the steady state analysis of shunt distributed power system under droop control is carried out from three aspects: circulation size, output voltage and output current, and the factors that affect the performance of traditional droop control are obtained. Furthermore, an improved droop control strategy based on adaptive virtual impedance is proposed, which can automatically adjust the droop virtual impedance according to the difference of power distribution between distributed power sources, so as to realize the average power distribution. Simulation results verify the effectiveness of the proposed improved droop control strategy. Secondly, a coordinated control strategy based on power stratification is proposed for unilateral power supply. Each unit of the system is divided and introduced, and the constraint conditions for the operation of the system are determined. The energy management and power allocation scheme of the coordinated control strategy are introduced respectively, and the grid-connected operation is expounded. The coordinated control flow of isolated island operation and transition operation is analyzed. The control methods of each unit converter of the system are analyzed and the simulation model is built to verify the proposed control strategy. Finally, an improved coordinated control strategy for DC microgrid based on DBS is proposed, which divides the operation of the system into four working modes. The switching signals between different modes are optimized by voltage signal synchronization preprocessing. The control strategy eliminates the central controller and combines the improved droop control strategy based on adaptive virtual impedance to improve the reliability and accuracy of the system as a whole. The simulation results show that the control strategy can maintain the stability of DC bus voltage and realize the power balance of the system.
【學(xué)位授予單位】:華北電力大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TM727
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 支娜;張輝;;直流微電網(wǎng)改進(jìn)分級(jí)控制策略研究[J];高電壓技術(shù);2016年04期
2 張立靜;婁素華;陳艷霞;吳耀武;黃旭銳;;基于電池租賃模式的電動(dòng)汽車換電站電池容量?jī)?yōu)化[J];電網(wǎng)技術(shù);2016年06期
3 呂振宇;吳在軍;竇曉波;胡敏強(qiáng);;自治直流微電網(wǎng)分布式經(jīng)濟(jì)下垂控制策略[J];中國(guó)電機(jī)工程學(xué)報(bào);2016年04期
4 何洋陽(yáng);黃康;王濤;張葛祥;;軌道交通牽引供電系統(tǒng)綜述[J];鐵道科學(xué)與工程學(xué)報(bào);2016年02期
5 支娜;張輝;肖曦;;提高直流微電網(wǎng)動(dòng)態(tài)特性的改進(jìn)下垂控制策略研究[J];電工技術(shù)學(xué)報(bào);2016年03期
6 王盼寶;王衛(wèi);孟尼娜;吳炎;;直流微電網(wǎng)離網(wǎng)與并網(wǎng)運(yùn)行統(tǒng)一控制策略[J];中國(guó)電機(jī)工程學(xué)報(bào);2015年17期
7 孟潤(rùn)泉;劉家贏;文波;韓肖清;;直流微網(wǎng)混合儲(chǔ)能控制及系統(tǒng)分層協(xié)調(diào)控制策略[J];高電壓技術(shù);2015年07期
8 楊方;白翠粉;張義斌;;能源互聯(lián)網(wǎng)的價(jià)值與實(shí)現(xiàn)架構(gòu)研究[J];中國(guó)電機(jī)工程學(xué)報(bào);2015年14期
9 田世明;欒文鵬;張東霞;梁才浩;孫耀杰;;能源互聯(lián)網(wǎng)技術(shù)形態(tài)與關(guān)鍵技術(shù)[J];中國(guó)電機(jī)工程學(xué)報(bào);2015年14期
10 張齊東;黃學(xué)良;陳中;陳立興;徐云鵬;;電動(dòng)汽車電池更換站集群充電控制策略研究[J];電工技術(shù)學(xué)報(bào);2015年12期
,本文編號(hào):1959024
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/1959024.html