基于超級電容器的儲能系統(tǒng)控制策略的研究
發(fā)布時間:2018-05-27 06:47
本文選題:超級電容器 + 電壓均衡策略。 參考:《西南交通大學(xué)》2017年碩士論文
【摘要】:近幾年來,對于可再生能源的發(fā)展與研究已逐漸成為能源市場的焦點,這種可以循環(huán)利用、無污染的清潔能源正在不斷的被投入到更多的應(yīng)用當(dāng)中。隨著混合動力車輛與電動汽車的普及,超級電容器正在得到越來越廣泛的運用。超級電容器有著容量大、充放電速率快等諸多優(yōu)點,現(xiàn)如今針對基于超級電容器的儲能系統(tǒng)的研究與開發(fā)已經(jīng)作為能源利用方面的一個重要選擇。本文首先對超級電容器的基本工作原理、幾種常用的數(shù)學(xué)模型、工作過程中的充放電特性以及其儲能陣列的優(yōu)化設(shè)計等進行詳細(xì)分析。單個的超級電容器耐壓普遍較低,因此在實際應(yīng)用中經(jīng)常將若干個超級電容器進行串并聯(lián)組合構(gòu)成超級電容器模組。由于每個超級電容器本身的電容量、等效串聯(lián)阻抗(ESR)、漏電流等參數(shù)存在差異,若不通過一定的電壓均衡策略與放電電壓控制策略進行控制,則會導(dǎo)致各電容之間的升壓速率不同,從而影響整個儲能系統(tǒng)的工作效率,同時還會降低超級電容器的壽命。因此,在實際應(yīng)用中通常會對超級電容器模組采取一定的均壓與穩(wěn)壓措施。均壓策略主要分為能耗型均壓與回饋型均壓,其中包括開關(guān)電阻法、穩(wěn)壓管法與DC-DC變換器法等。本文在第三章中首先對上述提到的幾種方法進行仿真分析并闡明優(yōu)缺點,而后在DC-DC變換器法的電路上提出一種改進方案并仿真,在實現(xiàn)能量循環(huán)的同時在均壓用時、能量損耗評估等多個方面與前面幾種方法進行比較。超級電容器組在正常工作時端電壓會不斷變化,針對這種情況通常在負(fù)載與超級電容器之間配置雙向直流變換器以達(dá)到恒壓放電或是恒功率放電等。本文在第四章中針對選用的雙向直流變換器拓?fù)浣⒘藬?shù)學(xué)模型,分析了其幾種工作模式以及推導(dǎo)了小信號傳遞函數(shù),并通過Matlab進行仿真,驗證了該方案的可行性與穩(wěn)定性。最后,以Infineon公司的XC886作為主控芯片,結(jié)合若干超級電容器搭建了儲能系統(tǒng)的實驗平臺,對超級電容器組進行充放電實驗,驗證了超級電容器的工作特性,保證了儲能系統(tǒng)的可靠性。
[Abstract]:In recent years, the development and research of renewable energy has gradually become the focus of the energy market, which can be recycled, pollution-free clean energy is being put into more and more applications. With the popularity of hybrid vehicles and electric vehicles, supercapacitors are becoming more and more widely used. Supercapacitors have many advantages, such as large capacity, high charge / discharge rate and so on. Nowadays, the research and development of energy storage system based on supercapacitors has become an important choice in energy utilization. In this paper, the basic working principle of supercapacitors, several commonly used mathematical models, the charge-discharge characteristics of supercapacitors and the optimal design of their energy storage arrays are analyzed in detail. Because of the low voltage resistance of a single supercapacitor, several supercapacitors are often combined in series and parallel to form supercapacitor modules in practical applications. Because of the difference of capacitance, equivalent series impedance, leakage current and other parameters of each supercapacitor, if not controlled by certain voltage equalization strategy and discharge voltage control strategy, The efficiency of the whole energy storage system will be affected and the life of the supercapacitor will be reduced. Therefore, in practical application, some voltage balancing and voltage stabilizing measures are usually adopted for supercapacitor modules. The voltage equalization strategy is mainly divided into energy consumption voltage equalization and feedback voltage sharing, including switching resistance method, voltage stabilizer method and DC-DC converter method. In the third chapter, the methods mentioned above are simulated and analyzed, and the advantages and disadvantages are illustrated. Then, an improved scheme is proposed on the circuit of DC-DC converter method, which realizes the energy cycle and uses voltage equalization at the same time. Energy loss assessment and other aspects are compared with the previous methods. The terminal voltage of supercapacitor banks changes continuously during normal operation. In order to achieve constant voltage discharge or constant power discharge, bidirectional DC converters are usually arranged between load and supercapacitor. In the fourth chapter, a mathematical model is established for the selected bi-directional DC converter topology. Several working modes and small signal transfer functions are analyzed and simulated by Matlab to verify the feasibility and stability of the scheme. Finally, taking XC886 of Infineon Company as the main control chip and combining with several supercapacitors to build the experimental platform of the energy storage system, the charging and discharging experiments of the supercapacitor banks are carried out, and the working characteristics of the supercapacitors are verified. The reliability of energy storage system is guaranteed.
【學(xué)位授予單位】:西南交通大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TM53
【參考文獻】
相關(guān)期刊論文 前10條
1 武偉;謝少軍;張f,
本文編號:1940927
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/1940927.html
最近更新
教材專著