電能質(zhì)量算法及其上位機(jī)軟件的研究
本文選題:電能質(zhì)量算法 + S變換 ; 參考:《太原理工大學(xué)》2017年碩士論文
【摘要】:電力行業(yè)作為國(guó)家基礎(chǔ)性產(chǎn)業(yè),為國(guó)民經(jīng)濟(jì)發(fā)展提供能源,與社會(huì)發(fā)展和人民生活密切相關(guān)。一方面,科技的不斷進(jìn)步為電力系統(tǒng)的發(fā)展提供了技術(shù)支持;另一方面,大量精密儀器設(shè)備的使用對(duì)電能質(zhì)量的要求越來越高。電能質(zhì)量的任何擾動(dòng),都有可能給用電行業(yè)造成嚴(yán)重的經(jīng)濟(jì)損失,甚至可能危及人身安全,因此對(duì)電能質(zhì)量的監(jiān)測(cè)顯得尤為重要。本文選擇改進(jìn)的S變換和卡爾曼算法作為分析電能質(zhì)量的工具,并搭建了一套基于Web GIS電能質(zhì)量監(jiān)測(cè)系統(tǒng),實(shí)現(xiàn)實(shí)時(shí)地圖顯示、熱力圖顯示、實(shí)時(shí)數(shù)據(jù)庫顯示,并進(jìn)行指標(biāo)分析。本文的主要研究?jī)?nèi)容分為以下幾點(diǎn):(1)介紹了課題的研究背景,闡述了電能質(zhì)量監(jiān)測(cè)系統(tǒng)的國(guó)內(nèi)外研究現(xiàn)狀,概述電能質(zhì)量問題,并研究比較了幾種常見的電能質(zhì)量算法的優(yōu)缺點(diǎn),選擇了S變換和卡爾曼算法分析電能質(zhì)量。(2)研究了一種改進(jìn)的S變換,即快速離散正交S變換算法,首先介紹了離散正交S變換算法,然后指出了該算法的計(jì)算復(fù)雜度,為了提高算法計(jì)算效率,利用矩陣分塊技術(shù)并結(jié)合快速傅里葉變換,實(shí)現(xiàn)了快速離散正交S變換。該算法提高了算法的計(jì)算效率,降低了算法的計(jì)算復(fù)雜度,并給出了算法計(jì)算復(fù)雜度的精確證明。將該算法應(yīng)用于五種常見的電能質(zhì)量擾動(dòng)分析中,定位擾動(dòng)起止時(shí)刻,通過對(duì)實(shí)際故障錄波數(shù)據(jù)的分析應(yīng)用,驗(yàn)證了算法的實(shí)用性。(3)針對(duì)卡爾曼算法無法處理非線性問題的缺點(diǎn),本文利用無跡變換,實(shí)現(xiàn)了無跡卡爾曼濾波算法。在建立的非線性狀態(tài)空間模型基礎(chǔ)上,通過無跡卡爾曼算法,估計(jì)基波幅值、頻率和直流分量。通過對(duì)幾組仿真數(shù)據(jù)的分析,表明無跡卡爾曼濾波算法抗噪聲能力強(qiáng),對(duì)頻率、直流分量和基波幅值突變以及諧波擾動(dòng)具有良好的適應(yīng)性,估計(jì)曲線能夠比較快速地收斂到穩(wěn)態(tài)值。(4)介紹了電能質(zhì)量上位機(jī)軟件的關(guān)鍵技術(shù),包括Web GIS、百度地圖API、Ajax局部刷新技術(shù)以及Socket通信技術(shù)。利用Socket通信技術(shù),將各個(gè)監(jiān)測(cè)站點(diǎn)接收的數(shù)據(jù)實(shí)時(shí)存儲(chǔ)到SQL Server 2005數(shù)據(jù)庫中;贛icrosoft Visual Studio 2010開發(fā)平臺(tái)、采用ASP.NET技術(shù)、調(diào)用百度地圖API、使用C#語言編寫了一套基于Web GIS的電能質(zhì)量監(jiān)測(cè)系統(tǒng),該系統(tǒng)包括實(shí)時(shí)地圖顯示、電壓熱力圖顯示、實(shí)時(shí)數(shù)據(jù)庫顯示,以及歷史數(shù)據(jù)的查詢與指標(biāo)分析,添加監(jiān)測(cè)站點(diǎn)等功能,并對(duì)這些功能進(jìn)行了詳細(xì)的說明。
[Abstract]:As a national basic industry, electric power industry provides energy for the development of national economy, which is closely related to social development and people's life. On the one hand, the continuous progress of science and technology has provided technical support for the development of power system; on the other hand, the use of a large number of precision instruments and equipment requires more and more high power quality. Any disturbance of power quality may cause serious economic loss to the power industry, and even endanger the personal safety, so it is very important to monitor the power quality. In this paper, the improved S transform and Kalman algorithm are selected as tools to analyze power quality, and a power quality monitoring system based on Web GIS is set up to display the real time map, the thermal map and the real time database. And the index analysis was carried out. The main research contents of this paper are as follows: 1) introduce the research background of the subject, expound the domestic and foreign research status of the power quality monitoring system, summarize the power quality problem, The advantages and disadvantages of several common power quality algorithms are compared. S transform and Kalman algorithm are selected to analyze power quality.) an improved S transform, I. e., fast discrete orthogonal S transform algorithm, is studied. This paper first introduces the discrete orthogonal S transform algorithm, then points out the computational complexity of the algorithm. In order to improve the efficiency of the algorithm, the fast discrete orthogonal S transform is realized by using the matrix partitioning technique and the fast Fourier transform. The algorithm improves the computational efficiency of the algorithm and reduces the computational complexity of the algorithm, and gives an accurate proof of the computational complexity of the algorithm. The algorithm is applied to the analysis of five kinds of power quality disturbances, which can locate the beginning and ending time of the disturbance, and through the analysis and application of the actual fault recording data, The practicability of the algorithm is verified. (3) aiming at the disadvantage that the Kalman algorithm can not deal with the nonlinear problem, the unscented Kalman filtering algorithm is realized by using the unscented transform in this paper. Based on the established nonlinear state space model, the fundamental amplitude, frequency and DC component are estimated by the unscented Kalman algorithm. Through the analysis of several groups of simulation data, it is shown that the unscented Kalman filter algorithm has strong anti-noise ability and good adaptability to frequency, DC component and fundamental wave amplitude mutation and harmonic disturbance. This paper introduces the key technologies of power quality software, including Web, Baidu map API Ajax local refresh technology and Socket communication technology. Using Socket communication technology, the data received by each monitoring station are stored in SQL Server 2005 database in real time. Based on Microsoft Visual Studio 2010 development platform, using ASP.NET technology, calling Baidu map API, and using C # language, a power quality monitoring system based on Web GIS is developed. The system includes real-time map display, voltage thermodynamic chart display and real-time database display. And historical data query and index analysis, add monitoring site and other functions, and these functions are described in detail.
【學(xué)位授予單位】:太原理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TM711
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 車彩玲;趙慶生;王旭平;郭尊;趙寅生;;基于快速離散正交S變換的電能質(zhì)量擾動(dòng)檢測(cè)方法[J];科學(xué)技術(shù)與工程;2017年02期
2 李晨懿;楊家莉;徐永海;吳亞盆;韋鵬飛;;模糊綜合評(píng)價(jià)在電壓暫降源識(shí)別中的應(yīng)用[J];電網(wǎng)技術(shù);2017年03期
3 王德文;楊力平;;智能電網(wǎng)大數(shù)據(jù)流式處理方法與狀態(tài)監(jiān)測(cè)異常檢測(cè)[J];電力系統(tǒng)自動(dòng)化;2016年14期
4 郭慶燕;張敏;楊賢棟;;JQuery Ajax異步處理JSON數(shù)據(jù)實(shí)現(xiàn)氣象圖片的顯示[J];計(jì)算機(jī)應(yīng)用與軟件;2016年06期
5 錢程;武雄;穆文平;朱閣;;GIS技術(shù)在水文地質(zhì)領(lǐng)域的應(yīng)用進(jìn)展[J];南水北調(diào)與水利科技;2016年03期
6 劉世明;郭韜;吳聚昆;李建輝;;適用于頻率偏移情況下同步相量測(cè)量的DFT算法研究[J];電網(wǎng)技術(shù);2016年05期
7 王宇飛;高昆侖;趙婷;邱健;;基于改進(jìn)攻擊圖的電力信息物理系統(tǒng)跨空間連鎖故障危害評(píng)估[J];中國(guó)電機(jī)工程學(xué)報(bào);2016年06期
8 劉R,
本文編號(hào):1933870
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/1933870.html