風(fēng)力發(fā)電機組偏航系統(tǒng)誤差與控制策略研究
本文選題:風(fēng)力發(fā)電機組 + 偏航誤差; 參考:《華北電力大學(xué)(北京)》2017年博士論文
【摘要】:現(xiàn)代大型風(fēng)力發(fā)電機組所處的三維風(fēng)場中存在風(fēng)剪切和塔影效應(yīng),風(fēng)輪捕獲的氣動載荷和功率都因之包含波動分量,致使機組振動、功率波動等問題突出;同時,自然界的風(fēng)隨機性強,風(fēng)速和風(fēng)向變化頻繁,風(fēng)電機組偏航系統(tǒng)經(jīng)常需要頻繁啟停以進行迎風(fēng)控制,即便如此,偏航誤差仍不能被很好的消除,機組在絕大多數(shù)情況下處于偏航狀態(tài)下運行。基于上述工程實際問題,本文以大型風(fēng)力發(fā)電機組為研究對象,首先開展了基于風(fēng)剪切和塔影效應(yīng)的等效風(fēng)速建模及其空間分布研究;然后基于等效風(fēng)速分布模型和偏航誤差模型,進一步研究了偏航誤差對風(fēng)力發(fā)電機組運行特性的影響;最后以偏航誤差對機組運行特性影響的階段性差異為判據(jù),提出了階段性優(yōu)化偏航控制策略的改進方法。論文采用MATLAB仿真分析與風(fēng)電場機組SCADA實際運行數(shù)據(jù)對比驗證的方法對課題內(nèi)容進行了深入研究。主要研究工作及取得的成果如下:現(xiàn)代風(fēng)力發(fā)電機組正朝著大型化的趨勢快速發(fā)展,風(fēng)剪切和塔影效應(yīng)對機組的影響愈發(fā)顯著,風(fēng)剪切和塔影效應(yīng)對空間風(fēng)速的影響使得風(fēng)速在風(fēng)輪掃略面上處處不同。針對這一問題,通過對風(fēng)剪切、塔影效應(yīng)以及兩者共同影響下的風(fēng)速擾動分量Wws,Wts和W+進行深入研究,提出了具有普適性的n-葉片風(fēng)力發(fā)電機組等效風(fēng)速分布模型,并推導(dǎo)了等效風(fēng)速變換因數(shù)W_(eq)的數(shù)學(xué)描述。采用MATLAB數(shù)值模擬了等效風(fēng)速的空間分布情況,并分析了2-葉片風(fēng)輪、3-葉片風(fēng)輪和4-葉片風(fēng)輪的等效風(fēng)速空間分布特點。以主流機型——3-葉片風(fēng)電機組為例,研究了風(fēng)機相關(guān)參數(shù)(R、H、A、x以及α和n等)對等效風(fēng)速變換因數(shù)W_(eq)的影響規(guī)律,研究結(jié)果表明這些參數(shù)對等效風(fēng)速的影響各不相同。通過推導(dǎo)并求解3-葉片風(fēng)力發(fā)電機組風(fēng)輪掃略面內(nèi)的等效風(fēng)速模型,結(jié)合風(fēng)機特性模型和偏航誤差模型,研究了在不同風(fēng)速、不同控制階段下偏航誤差對機組運行特性的影響。提出并推導(dǎo)了考慮偏航誤差的風(fēng)輪氣動轉(zhuǎn)矩系數(shù)Tc、風(fēng)輪轉(zhuǎn)速系數(shù)Sc和機組功率系數(shù)Pc的數(shù)學(xué)模型。通過MATLAB進行了仿真計算,并與風(fēng)場機組實際運行數(shù)據(jù)進行了對比驗證。研究結(jié)果表明風(fēng)機運行特性對偏航誤差的響應(yīng)隨風(fēng)速及機組控制階段的不同而出現(xiàn)明顯差異。以某風(fēng)場2MW風(fēng)力發(fā)電機組為研究和測試對像,首先描述和分析了目標(biāo)機組的SCADA運行數(shù)據(jù),進行了偏航系統(tǒng)性能分析,包括偏航過程分析、偏航誤差的分布特性和偏航動作的隨機特性分析,發(fā)現(xiàn)當(dāng)前偏航控制策略的不足。然后針對偏航誤差在不同風(fēng)速、不同控制階段對機組運行特性的不同影響規(guī)律,結(jié)合偏航誤差的概率分布特性及其與風(fēng)速變化的關(guān)系,提出了分段優(yōu)化偏航控制策略的思想和方法,給出了控制流程。最后對實驗機組進行了偏航控制參數(shù)優(yōu)化和測試,通過機組SCADA運行數(shù)據(jù)對比分析,驗證了本文所提偏航控制策略優(yōu)化方法的有效性。本文的研究成果可為全面了解風(fēng)輪掃略面上等效風(fēng)速的空間分布特點以及深入研究偏航狀態(tài)下的風(fēng)機運行特性提供有益參考,同時也可為偏航控制策略階段性優(yōu)化、機組運行穩(wěn)定性分析和風(fēng)能利用率提升等方面提供技術(shù)支持和理論依據(jù)。
[Abstract]:There are wind shear and tower shadow effects in the three dimensional wind field of modern large wind turbines. The aerodynamic load and power of the wind wheel are caused by the wave component, which causes the vibration of the unit and the power fluctuation. At the same time, the wind randomness of the natural wind is strong, the wind speed and the wind change frequently, and the wind turbine yaw system often needs frequency. Even if so, the yaw error can not be eliminated well, and the unit is in most cases in the yaw condition. Based on the practical problems mentioned above, this paper takes the large wind turbine as the research object, first develops the equivalent wind speed modeling based on the wind shear and the tower shadow effect and its space. Secondly, based on the equivalent wind velocity distribution model and the yaw error model, the effect of yaw error on the operating characteristics of the wind turbine is further studied. Finally, the phase difference of the effect of yaw error on the operating characteristics of the unit is taken as the criterion, and an improved method for the phased optimization of the yaw control strategy is proposed. The thesis adopts the MATLAB The main research work and the results are as follows: the modern wind turbine is developing rapidly towards large scale, the wind shear and the tower shadow effect on the unit are becoming more and more significant, wind shear and tower shadow effect, the main research work and the results are as follows. The influence of the wind speed on the wind speed is different. For this problem, the equivalent wind velocity distribution model of the n- blade wind turbine is put forward by the wind shear, the tower shadow effect and the wind speed disturbance component Wws, Wts and W+. The equivalent wind velocity distribution model is proposed and the equivalent wind is derived. The mathematical description of the speed transformation factor W_ (EQ) is used to simulate the spatial distribution of the equivalent wind speed by using the MATLAB numerical simulation, and the spatial distribution characteristics of the equivalent wind speed of the 2- blade wind wheel, the 3- blade wind wheel and the 4- blade wind wheel are analyzed. The main model, 3- blade wind turbine, is taken as an example to study the equivalent parameters of the fan (R, H, A, x, and N and so on). The influence of wind speed change factor W_ (EQ) shows that the influence of these parameters on the equivalent wind speed is different. By deriving and solving the equivalent wind speed model in the windwheel sweep surface of the 3- blade wind turbine, combining the fan characteristic model and the yaw error model, the yaw error under different wind speeds and different control stages is studied. The mathematical model of the aerodynamic torque coefficient Tc, the speed coefficient Sc of the wind wheel and the power coefficient Pc of the unit, which consider the deviation of the yaw error, is presented and deduced. The simulation calculation is carried out through MATLAB, and the comparison with the actual operating data of the wind turbine unit shows that the operating characteristics of the fan are on the yaw error. The response of 2MW wind turbine in a wind field is studied and tested. First, the SCADA operation data of the target unit are described and analyzed, and the performance analysis of the yaw system is carried out, including the analysis of the yaw process, the distribution of deviation error and the random characteristics of the yaw action. In view of the deficiency of the current yaw control strategy, the different influence laws of the yaw error on the operating characteristics of the unit at different wind speeds and different control stages, and the relationship between the probability distribution characteristics of the yaw error and the change of wind speed are proposed, and the thought and method of the segmented optimization of the deviation control strategy are put forward, and the control flow is given. In the end, the parameters of the yaw control parameters are optimized and tested. Through the comparison and analysis of the operating data of the unit SCADA, the effectiveness of the optimization method for the yaw control strategy proposed in this paper is verified. The results of this paper can fully understand the space distribution characteristics of the equivalent wind speed on the swept surface of the wind wheel and further study the yaw state. It provides a useful reference for the operating characteristics of the fan, and also provides technical support and theoretical basis for the phased optimization of the yaw control strategy, the analysis of the stability of the unit operation and the improvement of the utilization rate of wind energy.
【學(xué)位授予單位】:華北電力大學(xué)(北京)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2017
【分類號】:TM315
【參考文獻】
相關(guān)期刊論文 前10條
1 楊陽;李春;繆維跑;葉柯華;葉舟;;高速強湍流風(fēng)況下的風(fēng)力機結(jié)構(gòu)動力學(xué)響應(yīng)[J];動力工程學(xué)報;2016年08期
2 沈小軍;杜萬里;;大型風(fēng)力發(fā)電機偏航系統(tǒng)控制策略研究現(xiàn)狀及展望[J];電工技術(shù)學(xué)報;2015年10期
3 鄧英;周峰;田德;謝婷;雷航;張國強;;不同風(fēng)湍流模型的風(fēng)電機組載荷計算研究[J];太陽能學(xué)報;2014年12期
4 趙國群;徐勁松;;基于Web的風(fēng)電場監(jiān)控及信息管理系統(tǒng)的設(shè)計與研究[J];機電工程;2014年12期
5 朱明;;凝聚共識、完善管理,助力風(fēng)電產(chǎn)業(yè)健康發(fā)展[J];風(fēng)能;2014年11期
6 梁穎;方瑞明;;基于SCADA和支持向量回歸的風(fēng)電機組狀態(tài)在線評估方法[J];電力系統(tǒng)自動化;2013年14期
7 何偉;田德;鄧英;汪寧渤;;風(fēng)力發(fā)電機組旋轉(zhuǎn)湍流風(fēng)場數(shù)值模擬[J];中國電機工程學(xué)報;2013年11期
8 孔屹剛;王杰;顧浩;王志新;徐大林;;大型風(fēng)力機氣動載荷分析與功率控制[J];太陽能學(xué)報;2012年06期
9 周波;龔華軍;甄子洋;;風(fēng)切變和塔影效應(yīng)對風(fēng)力機變槳距控制的影響分析[J];可再生能源;2012年01期
10 楊偉歡;葉安麗;馬鴻雁;;模糊控制在風(fēng)力發(fā)電機組偏航控制系統(tǒng)中的應(yīng)用[J];北京建筑工程學(xué)院學(xué)報;2011年03期
相關(guān)碩士學(xué)位論文 前8條
1 梁元元;兆瓦級雙饋異步風(fēng)電機組偏航系統(tǒng)研究[D];山西大學(xué);2013年
2 吳智;小型風(fēng)力發(fā)電機主動偏航系統(tǒng)研制[D];中南大學(xué);2012年
3 賈平;偏航變槳軸承力學(xué)特性分析及結(jié)構(gòu)優(yōu)化設(shè)計[D];大連理工大學(xué);2012年
4 加成雙;風(fēng)力發(fā)電機組偏航振動的研究[D];吉林大學(xué);2011年
5 金長生;風(fēng)力發(fā)電機偏航控制系統(tǒng)的研究[D];大連理工大學(xué);2010年
6 馬小英;MW級雙饋風(fēng)電機組偏航控制系統(tǒng)的優(yōu)化及仿真[D];蘭州理工大學(xué);2010年
7 張慧寧;風(fēng)力發(fā)電機智能偏航控制系統(tǒng)研究[D];東華大學(xué);2010年
8 李守好;風(fēng)力發(fā)電裝置剎車系統(tǒng)及偏航系統(tǒng)智能控制研究[D];西安電子科技大學(xué);2005年
,本文編號:1922576
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/1922576.html